检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:方明慧 苏娟[1] 屈博 李德智 操谦 崔振宇 FANG MingHui;SU Juan;QU Bo;LI Dezhi;CAO Qian;CUI ZhenYu(College of Information and Electrical Engineering,China Agricultural University,Beijing 100083,China;China Electric Power Research Institute,Beijing 100192,China)
机构地区:[1]中国农业大学信息与电气工程学院,北京100083 [2]中国电力科学研究院有限公司,北京100192
出 处:《电力需求侧管理》2024年第6期1-7,共7页Power Demand Side Management
基 金:国家重点研发计划项目(2022YFB2403000)。
摘 要:电能替代潜力的有效分析对于制定电能替代发展策略和促进地方节能减排具有重要意义,分析不同情景下的电能替代发展趋势,可为地区电能替代发展规划提供科学依据。提出一种多情景下基于改进粒子群-支持向量机的电能替代潜力预测模型。分析了电力消费占比、单位GDP能耗、城市居民可支配收入和单位GDPCO_(2)排放量等电能替代潜力影响因素指标,并进行量化处理,采用皮尔逊相关系数法筛选关键指标并引入预测模型。考虑基准发展、技术进步、经济发展和低碳环保4种发展情景,预测多情景下的电能替代潜力。对我国南方某省实际数据进行分析,将灰狼优化算法支持向量机(grey wolf optimizer-support vectormachine,GWO-SVM)和SVM模型作为对比模型,验证了所提方法具有较好的预测效果,并着重分析了2030年、2035年不同情景下的电能替代潜力,为地区未来的电能替代规划提供理论依据。Effective analysis of the potential for electric energy substitution is significant for formulating development strategies and pro-moting local energy conservation and emission reduction.Analyzing the development trends of electric energy substitution under different scenarios can provide a scientific basis for regional planning.An improved particle swarm optimization-support vector machine model is proposed for predicting the potential of electric energy substitution under multiple scenarios.It analyzes indicators influencing electric en-ergy substitution potential,such as the proportion of electricity consumption,energy consumption per unit of GDP,disposable income of ur-ban residents,CO_(2) emissions per unit of GDP,and quantifies these indicators.Pearson correlation coefficient method is used to screen and introduce indicators into the prediction model.Four development scenarios—baseline development,technological progress,economic de-velopment,and low-carbon environmental protection are considered for predicting the potential for electric energy substitution.Actual data from a province in southern China is analyzed,comparing results with grey wolf optimizer-support vector machine(GWO-SVM)and SVM models,validating that the proposed method demonstrates good predictive performance.The electric energy substitution potential in 2030 and 2035 under various scenarios is also analyzed,providing theoretical support for future regional electric energy substitution planning.
关 键 词:电能替代 潜力预测 粒子群优化 支持向量机 多情景
分 类 号:TK018[动力工程及工程热物理] TM714[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15