基于多因素解纠缠的用户—兴趣点联合预测  

Joint Prediction for User and Point of Interest Based on Disentangling Influences

在线阅读下载全文

作  者:马卓 陈东子 何佳涵 王群[1] MA Zhuo;CHEN Dongzi;HE Jiahan;WANG Qun(Department of Computer Information and Cybersecurity,Jiangsu Police Institute,Nanjing 210031,China;Nanjing Municipal Public Security Bureau,Nanjing 210005,China)

机构地区:[1]江苏警官学院计算机信息与网络安全系,南京210031 [2]南京市公安局,南京210005

出  处:《信息网络安全》2024年第11期1685-1695,共11页Netinfo Security

基  金:国家自然科学基金(62202209)。

摘  要:用户—兴趣点预测问题基于在线用户的历史签入记录来判断用户是否会签入特定兴趣点,但用户—兴趣点数据存在长尾分布现象。针对该数据稀疏性问题,一些研究人员将地理效应和地理序列效应通过自监督学习进行解纠缠表示,以提升兴趣点预测任务的可解释性和准确性。文章引入语义序列效应,提出一种改进的解纠缠图嵌入模型,该模型利用兴趣点在地理空间和语义空间的成对约束,基于地理坐标空间和语义类别空间中影响因素的特征表达、特征修正、特征解耦合和多层感知机融合,在地理层面上结合语义层面更好地预测用户对兴趣点的访问情况。实验结果表明,该方法在签入稀疏的数据集上依然能够取得良好的预测效果。The problem of user-POI prediction,based on the user’s historical check-in records,determines whether a user checks in a specific POI.However,the user-POI data has a long-tail distribution phenomenon.To address this data sparsity challenge,existing work disentangled the geographical neighbor effect and the geographical sequence effect through self-supervised learning to improve the interpretability and accuracy of the POI prediction task.This paper further introduced the semantic sequence effect,and proposed an improved disentangled graph embedding model.The model used the pairwise constraints of point-of-interests in the geographic space and semantic space,and was based on the feature expression,feature modification,feature decoupling and multi-layer perceptron fusion of the influencing factors in the geographic coordinate space and the semantic category space.The geographic level could be combined with the semantic level to better predict the user’s access to the POI.Experimental results show that the proposed method can still achieve good prediction effects on sparse datasets.

关 键 词:兴趣点预测 自监督解纠缠 图嵌入 联合预测 

分 类 号:TP309[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象