检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周楝淞[1] 邵发明 杨洁[3] 彭泓力 李赛野 孙夏声[1] ZHOU Liansong;SHAO Faming;YANG Jie;PENG Hongli;LI Saiye;SUN Xiasheng(No.30 Institute of CETC,Chengdu Sichuan 610041,China;Army Engineering University of PLA,Nanjing Jiangsu 210007,China;Sichuan Electric Power Corporation,Chengdu Sichuan 610016,China)
机构地区:[1]中国电子科技集团公司第三十研究所,四川成都610041 [2]陆军工程大学野战工程学院,江苏南京210007 [3]四川省电力公司,四川成都610016
出 处:《信息安全与通信保密》2024年第10期115-126,共12页Information Security and Communications Privacy
基 金:四川省科技厅重大专项(MWA22Y307)。
摘 要:基于区域的快速卷积神经网络存在资源的浪费和无法有效应对小目标检测的问题,提出基于高可能性区域推荐网络及特征富集的区域的小目标检测卷积神经网络架构。首先,采用区域推荐网络对锚点区域进行筛选,节约分类阶段的处理时间,提高了系统的处理速度。其次,为了解决无法有效检测小目标的问题,提出了融合视觉几何组16层网络的第三、第四、第五层特征信息的方法来强化特征表达的策略。最后,提出次要感兴趣区域的概念,将交通标志的上下文信息融合到目标特征表达中。这些策略提高了目标检测的准确率和速度。Region-based fast convolutional neural networks suffer from resource wastage and an inability to effectively tackle the challenge of small object detection.To address these issues,this paper proposes convolutional neural network architecture for small object detection based on high possibility region proposal network and feature-enriched region.First,the region proposal network is employed to filter anchor regions,thereby saving processing time during the classification stage and enhancing the system’s processing speed.Then,to address the problem of ineffective detection of small objects,a strategy is proposed to strengthen feature representation by fusing the feature information from the third,fourth,and fifth layers of the VGG 16-layer network.Finally,the concept of secondary regions of interest is introduced to integrate the contextual information of traffic signs into the object feature representation.These strategies improve both the accuracy and speed of object detection.
分 类 号:TP309[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30