基于改进YOLOv5的天线下倾角识别方法研究  

Research on antenna dip angle recognition method based on improved YOLOv5

在线阅读下载全文

作  者:张柠 潘峰 耿鲁静 陈祖昊 许婷婷 ZHANG Ning;PAN Feng;GENG Lujing;CHEN Zuhao;XU Tingting(China Mobile Group Co.,Ltd.,Beijing 100033,China;China Mobile Group Design Institute Co.,Ltd.,Beijing 100080,China)

机构地区:[1]中国移动通信集团有限公司,北京100033 [2]中国移动通信集团设计院有限公司,北京100080

出  处:《电信科学》2024年第10期173-181,共9页Telecommunications Science

摘  要:为了实现天线下倾角的高效、准确测量,满足无线优化运维场景大规模、高效率的测量需求,将YOLOv5目标检测框架巧妙应用于天线下倾角测量的复杂场景中,并对其进行改进,使之适用于复杂的天线检测与姿态识别任务,同时精准预测下倾角。实验结果显示,改进后的YOLOv5模型在保持与改进前相当的侧对天线检测能力的同时,其下倾角预测误差降低了13%,预测绝对误差为0.635°。改进YOLOv5模型在保证高准确率的同时,显著提高了天线下倾角的测量精度,为无线优化智能运维提供了新的技术路径和参考依据。In order to achieve efficient and accurate measurement of antenna dip angle and meet the large-scale and efficient measurement requirements in wireless optimization operation and maintenance scenarios,the YOLOv5 target detection framework was cleverly applied in the complex scenario of antenna dip angle measurement,and it was improved to make it suitable for complex antenna detection and attitude recognition tasks,and accurately predict the dip angle.Experimental results show that the improved YOLOv5 model has the same detection capability as the original version,while its downdip prediction error is reduced by 13%,and the absolute prediction error is 0.635°.The improved YOLOv5 model not only guarantees high accuracy,but also significantly improves the measurement accuracy of antenna dip angle,providing a new technical path and reference basis for wireless optimization intelligent operation and maintenance.

关 键 词:天线下倾角 目标检测 深度学习 图像信号处理 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] TN820[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象