检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:母仕林 刘灿 罗小波[1] 苟永承 MU Shilin;LIU Can;LUO Xiaobo;Gou Yongchen(Chongqing Engineering Research Center for Spatial Big Data Intelligence Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;Chongqing Ecological Environment Monitoring Center,Chongqing 401147,China)
机构地区:[1]重庆邮电大学空间大数据智能技术重庆市工程研究中心,重庆400065 [2]重庆市生态环境监测中心,重庆401147
出 处:《遥感信息》2024年第5期111-120,共10页Remote Sensing Information
基 金:国家重点研发计划政府间国际科技创新合作项目(2021YFEO194700);重庆市教委重点合作项目(HZ2021008)。
摘 要:针对当前主流地理加权地表温度降尺度算法仅考虑地表温度(land surface temperature,LST)与尺度因子间线性或简单非线性关系的问题,提出了一种利用随机森林表征复杂非线性关系并与GWR耦合(geographically weighted random forest model,GWRF)的LST降尺度框架。GWRF降尺度框架从反射率、光谱指数、地形因子等多种尺度因子中筛选出最佳因子,利用地理加权随机森林方法建立LST与尺度因子间复杂的局部非线性关系,实现1000 m LST降尺度到100 m。以北京和张掖地区作为实验区,并与地理加权回归、非线性地理加权回归、随机森林回归模型进行比较。研究发现,基于GWRF的降尺度模型在所有研究区均表现良好,均方根误差和平均绝对误差均低于其他模型,并且具有更高的决定系数R 2。A land surface temperature(LST)downscaling framework using random forest to characterise complex nonlinear relationships and coupled with GWR(geographically weighted random forest model,GWRF)is proposed to address the problem that the mainstream geographically weighted LST downscaling algorithm only considers linear or simple nonlinear relationships with scale factors.The GWRF downscaling framework selects the best factors from reflectance,spectral index,topographic factors,etc.,and establishes the complex local nonlinear relationship between LST and scale factors using the geographically weighted random forest method,so as to achieve the downscaling of LST from 1000 m to 100 m.In this study,the experimental areas in Beijing and Zhangye are used as the experimental areas,and the geographically weighted random forest model is used as the experimental area to determine the downscaling of the LST.Compared with the geographically weighted regression(GWR),nonlinear geographically weighted regression(NGWR),and random forest regression(RF)models,it is found that the GWRF-based downscaling model performs well in all the study areas,with the root-mean-square error(RMSE)and mean-absolute error(MAE)lower than those of the other models,and it also has a higher coefficient of determination,R 2.
分 类 号:TP79[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13