检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:何巧 HE Qiao(Guangzhou City Polytechnic,Guangzhou 510000,China)
机构地区:[1]广州城市职业学院,广州510000
出 处:《遥感信息》2024年第5期171-178,共8页Remote Sensing Information
摘 要:针对光学与SAR影像间存在非线性辐射畸变导致匹配正确率低的问题,提出线性注意力机制优化的光学与SAR影像匹配方法。该方法利用SuperPoint的描述分支将融合像素级的梯度方向直方图特征进行特征图维度重构,在维度层面增强特征的语义识别能力;在特征匹配阶段,利用线性注意力机制对SuperGlue算法进行优化,同时采用单样本分类准确性约束、全样本全局一致性约束以及局部范围结构一致等多种约束,构建多尺度损失函数进行训练,增强不同尺度下错误匹配的特征区分。利用6组光学与SAR遥感影像进行实验对比,结果表明,该方法相比HOPC、AWOG、CMM-Net及SuperGlue方法,匹配正确率、匹配效率均有较大提升。Addressing the issue of low matching accuracy caused by nonlinear radiation distortion between optical and SAR images,an optimization method for optical and SAR image matching using linear attention mechanism is proposed.This method utilizes the SuperPoint description branch to fuse pixel-level gradient direction histogram features for feature map dimensional reconstruction,enhancing the semantic recognition ability of features at the dimensional level.In the feature matching stage,the linear attention mechanism is used to optimize the SuperGlue algorithm,and various constraints such as single-sample classification accuracy constraint,full-sample global consistency constraint,and local range structural consistency are adopted.A multi-scale loss function is constructed for training,enhancing the feature differentiation of mismatched features at different scales.Experiments conducted using six sets of optical and SAR remote sensing images demonstrate that this method,compared with HOPC,AWOG,CMM-Net,and SuperGlue methods,significantly improves both matching accuracy and efficiency.
关 键 词:影像匹配 灰度信息 特征融合 线性注意力机制 多尺度损失函数
分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.97.63