检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈守杰 沈杨阳 闫威[2] 王勇源 李栋 CHEN Shoujie;SHEN Yangyang;YAN Wei;WANG Yongyuan;LI Dong(Technical Center,Henan Tongyu Metallurgy Materials Group Co.,Ltd.,Xixia 474571,Henan,China;State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing,Beijing 100083,China;School of Materials Science and Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,Jiangxi,China)
机构地区:[1]河南通宇冶材集团有限公司技术中心,河南西峡474571 [2]北京科技大学绿色低碳钢铁冶金全国重点试验室,北京100083 [3]江西理工大学材料科学与工程学院,江西赣州341000
出 处:《连铸》2024年第5期63-72,104,共11页Continuous Casting
摘 要:连铸保护渣在保障连铸顺行和铸坯质量方面发挥着关键作用,其作用的发挥与保护渣的性能密切相关。保护渣的黏度和熔化温度是保护渣的关键性能参数,其测定所需的时间与物力成本较高。鉴于机器学习技术的发展,本研究基于K近邻算法(KNN)、核岭回归算法(KRR)与随机森林算法(RF)3种机器学习算法建立保护渣黏度和熔化温度预报模型,旨在准确预报保护渣的黏度与熔化温度,为保护渣的快速、便捷设计提供指导。结果表明,基于KRR算法的模型在保护渣黏度预报方面有着较好的表现,其决定系数(R^(2))、均方根误差(RMSE)和平均绝对误差(MAE)分别为0.983、0.023和0.014;基于RF算法的模型在预报保护渣熔化温度方面具有更高的可靠性,R^(2)、RMSE和MAE分别为0.823、14.004和8.974。输入特征的排列重要性分析表明SiO_(2)、F、Al_(2)O_(3)对黏度的影响依次降低,Na_(2)O对熔化温度的影响最大。与广泛应用的黏度和熔化温度预报模型相比,KRR算法黏度预报模型和RF算法熔化温度预报模型的平均相对误差(MRE)分别为6.26%和0.83%,远低于目前广泛应用的预报模型的平均相对误差,表明机器学习模型具有较高的可靠性。基于模型建立的黏度和熔化温度分布图可为保护渣的设计提供直观参考。Mold fluxes play important role in ensuring the smooth casting and slab quality,which is closely related to the properties of mold fluxes.The viscosity and melting temperature of mold fluxes are key parameters in the design and production of mold fluxes;however,the determination of property is time-consuming and labor-intensive.In view of the development of machine learning technology,three machine learning algorithms including KNN,KRR and RF were employed to establish the prediction model to accurately predicting viscosity and melting temperature of mold fluxes,providing a guide to the fast and convenient design of mold fluxes.The experimental results show that compared to other two models,KRR-based model has the best performance in the viscosity prediction,in which the coefficient of determination(R^(2))is 0.983,the root mean squared error(RMSE)is 0.023,and the mean absolute error(MAE)is 0.014.The RF-based model is more reliable in predicting the melting temperature with R^(2)of 0.823,RMSE of 14.004,and MAE of 8.974.The ranked importance analysis of the input features shows that the order of influence of viscosity is SiO_(2),F,and Al_(2)O_(3)and Na_(2)O has the greatest influence on melting temperature.Compared with the widely used viscosity and melting temperature prediction models,the mean relative errors(MRE)of the KRR-based viscosity prediction model and the RF-based melting temperature prediction model are 6.26%and 0.83%,respectively,which are much lower than MRE of the widely used prediction models,indicating that the machine learning-based models have a high reliability.Moreover,the viscosity and melting temperature distribution maps established based on the models could provide intuitive reference for the design of mold fluxes.
分 类 号:TF777[冶金工程—钢铁冶金] TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.200.151