融合认知负荷的学习者模型的构建与推荐研究  被引量:1

Research on Construction and Recommendation of Learner Model Integrating Cognitive Load

在线阅读下载全文

作  者:袁满[1] 卢雯雯 YUAN Man;LU Wenwen(School of Computer and Information Technology,Northeast Petroleum University,Daqing 163318,China)

机构地区:[1]东北石油大学计算机与信息技术学院,黑龙江大庆163318

出  处:《吉林大学学报(信息科学版)》2024年第5期943-951,共9页Journal of Jilin University(Information Science Edition)

基  金:黑龙江省高等教育教学改革基金资助项目(SJGY20200107)。

摘  要:由于认知负荷作为学习者学习过程中认知系统所产生的负载,对学习者的学习状态有重要影响,并且目前已有的学习者模型中缺乏对学习者认知负荷的研究。为此以教育部教育信息化技术标准委员会提出的CELTS-11(China E-Learning Technology Standardization-11)为基础,将认知负荷作为一个维度融入学习者模型,构建了静态与动态信息相结合的LMICL(Learner Model Incorporating Cognitive Load)。然后,以自适应学习系统为依托,将未融合认知负荷的学习者模型的数据和LMICL的数据分别作为推荐学习资源的依据,产生了两种不同的学习资源推荐结果,并随机选取两个班级的学习者在该系统中进行学习,最后从学习者的学习成绩、认知负荷结果和满意度3个指标对LMICL的效果进行验证。结果表明,基于LMICL的推荐学习效果强于未融合认知负荷的学习者模型。The current learner model lacks exploration of this dimension of cognitive load,which,as a load generated by the cognitive system during the learning process,has a significant impact on the learning state of learners.Based on the CELTS-11(China E-Learning Technology Standardization-11)proposed by the China E-Learning Technology Standardization Committee,cognitive load is integrated into the learner model as a dimension,and an LMICL(Learner Model Incorporating Cognitive Load)combining static and dynamic information is constructed.Afterwards,relying on an adaptive learning system,the data of the unmixed cognitive load learner model and the LMICL data were used as the basis for recommending learning resources,resulting in two different learning resource recommendation results.Two classes of learners were randomly selected to learn system,and then their academic performance.The results of cognitive load and satisfaction were used to validate the effectiveness of LMICL,and it was found that the recommendation learning effect based on LMICL was better than that of the learner model without integrating cognitive load.

关 键 词:学习者模型 认知负荷 融合认知负荷的学习者模型(LMICL) 

分 类 号:TP301[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象