检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邹耀斌[1] 张彬 ZOU Yaobin;ZHANG Bin(Hubei Key Laboratory of Intelligent Vision Monitoring for Hydropower Engineering(China Three Gorges University),Yichang Hubei 443002,China;College of Computer and Information Technology,China Three Gorges University,Yichang Hubei 443002,China)
机构地区:[1]水电工程智能视觉监测湖北省重点实验室(三峡大学),湖北宜昌443002 [2]三峡大学计算机与信息学院,湖北宜昌443002
出 处:《计算机应用》2024年第11期3565-3573,共9页journal of Computer Applications
基 金:国家自然科学基金资助项目(61871258)。
摘 要:灰度图像的灰度直方图可以呈现出无峰、单峰、双峰或多峰的形态特征,但传统熵阈值分割方法大多仅适合处理具有单峰或双峰形态特征的灰度图像。为了提高熵阈值分割方法的分割精度和分割适应性,提出一种四向加权香农熵最大化导向的自动阈值分割方法 FWSE(Four-directional Weighted Shannon Entropy)。首先用新设计的方向性Prewitt卷积核在4个方向进行多尺度乘积变换(MPT),以获得一系列方向性MPT图像;再基于三次样条插值函数和曲率最大化准则自动计算出每个方向的最优MPT图像;其次在每个方向上通过内外轮廓图像对最优MPT图像的像素进行重新取样,以获取重构的灰度直方图,并在此基础上计算相应的香农熵;最后以4个方向的加权香农熵最大化为准则选取最佳分割阈值。与新近的3种阈值分割方法以及2种非阈值分割方法在4幅合成图像和100幅真实世界图像上进行实验,结果显示:在合成图像上,FWSE方法的平均马修斯相关系数(MCC)达到了0.999;在真实世界图像上,FWSE方法与其他5个分割方法的平均MCC分别是0.974、0.927、0.668、0.595、0.550和0.525。这表明FWSE方法具有更高的分割精度和更灵活的分割适应性。The grayscale histogram of a grayscale image may have non-modal,unimodal,bimodal,or multi-modal morphological characteristics.However,most traditional entropy thresholding methods are only suitable for processing the grayscale images with unimodal or bimodal morphological characteristics.To improve the segmentation accuracy and adaptability of entropy thresholding methods,an automatic thresholding method guided by maximizing four-directional weighted Shannon entropy was proposed,namely FWSE(Four-directional Weighted Shannon Entropy).Firstly,a series of Multi-scale Product Transformation(MPT)images were obtained by performing MPTs with the directional Prewitt convolution kernels in four directions.Secondly,the optimal MPT image in each direction was computed automatically based on the cubic spline interpolation function and the curvature maximization criterion.Thirdly,the pixels on each optimal MPT image were resampled by using inner and outer contour images to reconstruct the grayscale histogram,and the corresponding Shannon entropy was calculated based on the above.Finally,the optimal segmentation threshold was selected based on the criterion of maximizing weighted Shannon entropy in four directions.FWSE method was compared with three recent thresholding methods and two recent non-thresholding methods on 4 synthetic images and 100 real-world images.Experimental results show that:on the synthesis images,the average Matthews Correlation Coefficient(MCC)of the FWSE method reaches 0.999;on the real-world images,the average MCCs of the FWSE method and the other five segmentation methods are 0.974,0.927,0.668,0.595,0.550,and 0.525 respectively.It can be seen that the FWSE method has higher segmentation accuracy and more flexible segmentation adaptability.
关 键 词:阈值分割 香农熵 多尺度乘积变换 三次样条插值函数 曲率最大化
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222