检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:任海 王涛 贾利云[1] REN Hai;WANG Tao;JIA Liyun(Hebei University of Architecture,Zhangjiakou,Hebei 075000)
出 处:《河北建筑工程学院学报》2024年第3期222-228,共7页Journal of Hebei Institute of Architecture and Civil Engineering
摘 要:安全帽的佩戴对建筑工地和工厂的工人来说至关重要,佩戴安全帽是施工场地的重要防护措施。如何有效地监测和确保安全帽的佩戴一直是企业监管的一大挑战。基于这一问题,在YOLOv8算法的基础上,通过改进YOLOv8网络的主干网络和头部网络来提高检测精度。实验结果表明,改进的算法检测准确率可达74.4%,与YOLOv8相比提升了0.4个百分点。这个改进对于提高安全帽检测的准确性具有重要意义。Wearing a safety helmet is crucial for construction site and factory workers.Wearing a safety helmet is an important protective measure at the construction site.How to effectively monitor and ensure the wearing of safety helmets has always been a major challenge for corporate supervision.First,this paper improves the detection accuracy based on the YOLO v8algorithm by replacing the backbone network and head network of the YOLOv8network.Experimental results show that the detection accuracy of the improved algorithm reaches 74.4%,Compared to YOLOv8,there has been an improvement of 0.4percentage points.This improvement is used to improve the accuracy of helmet detection and is of great significance meaning.
分 类 号:TP39[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229