检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:白雪 毛峥 马相龙 BAI Xue;MAO Zheng;MA Xianglong(Shanghai Marine Equipment Research Institute,Shanghai 200031,China)
出 处:《机电设备》2024年第6期58-64,69,共8页Mechanical and Electrical Equipment
摘 要:针对双绕组无刷直流电机(DW-BLDCM)参数难以在线辨识的问题,设计一种基于模型预测自适应控制(MRAS)的双绕组无刷直流电机在线参数辨识算法。基于DW-BLDCM的理想相电流波形建立电机模型,消除了2组绕组之间的互感耦合,使参数辨识更准确。通过DW-BLDCM状态方程建立模型预测自适应模型,实现在线参数辨识。试验结果显示:电机相电感的辨识误差为3.33%,相电阻的辨识误差为3.70%。结果表明,基于MRAS的算法可实现DW-BLDCM的在线参数辨识。Aiming at the problem that it is difficult to identify the parameters of double winding brushless DC motor(DW-BLDCM)online,an online parameter identification algorithm of DW-BLDCM based on model predictive adaptive control(MRAS)is designed.Firstly,the motor model is established based on the ideal phase current waveform of DW-BDLCM,which eliminates the mutual inductance coupling between the tow groups of windings and makes the parameter identification more accurate.Then,the MRAS model is established through the state equation of DW-BLDCM to realize online parameter identification.The experimental results show that the identification error of motor phase inductance and phase resistance is 3.33%and 3.70%,respectively.The results show that the algorithm based on MRAS can realize the online parameter identification of DW-BLDCM.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.69