三维激光点云在室内深基坑沉降监测中的应用研究  

Study on the Application of Three-Dimensional Laser Point Cloud in Indoor Deep Foundation Pit Settlement Monitoring

在线阅读下载全文

作  者:徐斌 XU Bin(China Railway Construction Group Co.Ltd.,Beijing 100040,China)

机构地区:[1]中铁建设集团有限公司,北京100040

出  处:《铁道建筑技术》2024年第11期162-165,共4页Railway Construction Technology

基  金:中铁建设集团有限公司科技研究开发计划项目(2023-12b)。

摘  要:与深基坑相关的工程问题一直是研究的热点,基坑监测对于保证施工安全具有重要意义。当前对于室内深基坑施工过程中,特别是基坑施工对既有建筑产生的影响缺乏足够的研究关注。目前施工现场采用的传统监测方案难以满足工程的相关要求。本研究利用BIM和激光点云三维扫描技术,以某工程室内深基坑建设项目为依托,通过获取浇筑全过程的建筑点云数据,经过相应处理计算得到特征柱体的沉降变化。研究表明浇筑阶段建筑结构不同部位沉降趋势相似,所有的柱体沉降变化均未超过1 cm,总体沉降变化满足要求。本研究实现了建筑沉降高效且无损的监测方式,保证了工程质量,也提高了现场施工监测效率。The engineering problems related to deep foundation pits are the focus of this research.Foundation pit monitoring is of important research significance for ensuring construction safety.Currently,there is a lack of sufficient research and attention on the impact of indoor deep foundation pit construction,especially on existing buildings.However,the traditional monitoring scheme is difficult to meet the relevant requirements of the project.This study utilizes BIM and laser point cloud threedimensional scanning technology.Based on a certain indoor deep foundation pit construction project,it obtained the building point cloud data for the entire pouring process.After corresponding processing,it calculated the settlement changes of the characteristic columns.The study shows that the settlement trends of different parts of the building structure during the pouring stage are similar,and the settlement changes of all the columns do not exceed 1 cm.The overall settlement changes meet the project′s requirements.This study realizes an efficient and non-destructive monitoring method for building settlement,ensures the quality of the project,and also improves the efficiency of on-site construction monitoring.

关 键 词:室内深基坑 激光点云 混凝土浇筑 沉降监测 

分 类 号:P225.2[天文地球—大地测量学与测量工程] TU753[天文地球—测绘科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象