小偏差永磁同步电机双矢量模型预测控制  被引量:1

Small deviation dual vector model predictive control for permanentmagnet synchronous motor

在线阅读下载全文

作  者:陈荣[1] 翟凯淼 舒胡平 CHEN Rong;ZHAI Kaimiao;SHU Huping(College of New Energy,China University of Petroleum,Qingdao 266000,China)

机构地区:[1]中国石油大学(华东)新能源学院,山东青岛266000

出  处:《电机与控制学报》2024年第10期155-165,共11页Electric Machines and Control

摘  要:传统的永磁同步电机双矢量模型预测控制的合成电压矢量与参考电压矢量的偏差较大,且存在计算量大、开关频率高的缺点,在实际工况中难以实现良好的控制性能。为了解决上述问题,提出一种小偏差永磁同步电机双矢量模型预测控制策略,通过分析参考电压矢量的变化规律,构造新的电压矢量选择表,将电压矢量的选择范围从六个降为三个,减小计算量的同时也降低了开关频率;针对传统的作用时间计算方法存在的问题,提出基于偏差最小原则的作用时间计算方法,并详细证明了该方法的优越性。仿真和实验结果显示,所提出的方法能够有效减小计算量和降低开关频率,同时具有较好的稳态和动态性能。The traditional dual-vector model predictive control of permanent magnet synchronous motor has a large deviation between the synthetic voltage vector and the reference voltage vector,and has the disadvantages of large calculation and high switching frequency.It is difficult to achieve good control performance in actual working conditions.In order to solve the above problems,a double vector model predictive control strategy with small deviation for permanent magnet synchronous motor was proposed.By analyzing the variation of reference voltage vector,a new voltage vector selection table was constructed,and the selection range of voltage vector was reduced from six to three,which reduces the amount of calculation and decreases the switching frequency.Aiming at the problems existing in the traditional calculation method of action time,a calculation method of action time based onαandβaxis voltage functions was proposed,and the superiority of the method was proved in detail.The simulation and experimental results show that the proposed method can effectively reduce the amount of calculation and reduce the switching frequency,and has good steady-state and dynamic performance.

关 键 词:永磁同步电机 模型预测控制 小偏差 双矢量 低开关频率 作用时间 

分 类 号:TM351[电气工程—电机]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象