检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:舒小东[1] SHU Xiaodong(School of Physical Education,Quanzhou Normal University,Quanzhou Fujian 362000,China)
出 处:《泉州师范学院学报》2024年第5期72-79,共8页Journal of Quanzhou Normal University
基 金:福建省中青年教师教育科研项目(JAS19264)。
摘 要:针对复杂场景下游泳训练视频不同手臂动作识别准确性不足的问题,研究一种基于改进动态时间规整(DTW)算法的游泳训练视频手臂动作识别方法.将图像划分为若干个超像素区域,并通过计算显著值将像素合并成显著区域;借助人体骨骼结构,从显著区域中提取游泳手臂动作特征参数;将特征组成时间序列数据,利用改进DTW算法通过相似度匹配的特性来完成动作类型识别.结果表明:该方法的杰卡德系数较高,可以识别和分析不同场景下不同泳姿动作,具有更高的准确性和一致性.In response to the problem of insufficient accuracy in recognizing different arm movements in swimming training videos in complex scenes,this article studied a swimming training video arm movement recognition method based on an improved DTW algorithm.In complex scenarios,the recognition ability for different swimming postures or movements was limited.To address the above issues,a swimming training video arm motion recognition method based on an improved DTW algorithm was studied.The image into several superpixel regions and merge the pixels intosalient regions by calculating salient values,extracting swimming arm motion feature parameters from salient regions using human skeletal structure.Features were combined into time series data and the improved DTW algorithm was used to achieve action type recognition through similarity matching.The results indicated that the studied method had a high Jaccard coefficient,which can identify and analyze different swimming postures in different scenarios,with higher accuracy and consistency.
关 键 词:游泳训练视频 手臂动作 改进动态时间规整(DTW)算法 显著区域检测
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.139.201