检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吕仁杰 常文文 闫光辉[1,2] 聂文超 郑磊 郭斌 LYU Renjie;CHANG Wenwen;YAN Guanghui;NIE Wenchao;ZHENG Lei;GUO Bin(School of Electronic and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China;Gansu Provincial Key Laboratory of Media Convergence Technology and Communication,Lanzhou 730030,China;School of Computer Science,Northwestern Polytechnical University,Xi'an 710129,China)
机构地区:[1]兰州交通大学电子与信息工程学院,兰州730070 [2]甘肃省媒体融合技术与传播重点实验室,兰州730030 [3]西北工业大学计算机学院,西安710129
出 处:《电子科技大学学报》2024年第6期952-960,共9页Journal of University of Electronic Science and Technology of China
基 金:国家自然科学基金(62366028,62466032);甘肃省科技重大专项(23ZDFA012);甘肃省科技计划项目(24JRRA256);甘肃教育厅科技项目(甘财教2023-25号);甘肃省教育厅青年博士项目(2023QB-038)。
摘 要:针对运动想象脑−机接口的分类识别问题,提出了一种结合格拉姆角场理论、卷积神经网络(Convolutional Neural Networks,CNN)和长短期记忆网络(Long Short-Term Memory,LSTM)的新模型。首先,分别使用格拉姆角场中的格拉姆角和场与格拉姆角差场算法将一维运动想象脑电信号表示为二维图像;然后,设计针对性的浅层CNN和LSTM相结合的模型来识别该图像特征,从而完成运动想象分类。在BCI Competition IV 2a公开数据集上就运动想象任务进行了四分类验证。实验结果表明,在单被试和多被试的情况下,GASF-CNN-LSTM模型和GADF-CNN-LSTM模型相比其他模型性能提升显著,准确率均达87.66%以上,最高准确率可达99.09%。且针对运动功能障碍患者数据也能表现出良好的性能。对运动想象脑电信号的时间依赖性和对应特征的图像生成表征方法进行了探讨,为运动想象脑电信号特征挖掘提供了新思路。As a paradigm of brain-computer interface,motor imagery has a broad application prospect in the field of medical rehabilitation.Due to the non-stationarity and low signal-to-noise ratio of Electroencephalograph(EEG)signals,how to effectively extract the features of motor imagery signals and achieve accurate recognition is a key issue in the motor imagery brain-computer interface technology.Aiming at the classification and recognition problem of motor imagery brain-computer interface,this paper proposes a new method combining Gramian Angular Field(GAF)theory,Convolutional Neural Networks,and Long Short-Term Memory(LSTM).First of all,The Gramian Angular Summation Field(GASF)and the Gramian Angular Difference Field(GADF)in GAF are used respectively.GADF algorithm represents one-dimensional motor imagery EEG signals into two-dimensional images.Then,a targeted shallow Convolutional Neural Network(CNN)model is designed to realize the recognition of the image features to complete the motor imagery classification.A 4-class validation on the BCI Competition IV 2a public dataset is performed on the motor imagery task.The experimental results indicate that,in both singlesubject and multi-subject scenarios,the GASF-CNN-LSTM and GADF-CNN-LSTM models exhibit significant performance improvements compared to other state-of-the-art models.Their accuracies surpass 87.66%,with the highest accuracy reaching 99.09%.Moreover,these models demonstrate strong performance when handling data from patients with motor functional disorders,further confirming the effectiveness of the models.In this paper,the time dependence and the image generation and representation technology of the corresponding features of the motor image EEG are discussed,which provides a new idea for the feature mining of the motion image EEG.
关 键 词:脑−机接口 运动想象 格拉姆角和场 格拉姆角差场 卷积神经网络
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171