“人工智能+”背景下信息可视化技术课程混合教学模式研究  被引量:2

Research on Mixed Teaching Mode of Information Visualization Technology Course under the Background of“Artificial Intelligence Plus”

在线阅读下载全文

作  者:夏玲 徐文超 XIA Ling;XU Wenchao(Nanfang College·Guangzhou,Guangzhou 510970,China)

机构地区:[1]广州南方学院,广州510970

出  处:《职业技术》2024年第12期90-95,共6页Vocational Technology

基  金:广东省高等教育学会“十四五”规划2024年度高等教育研究课题“基于数据可视化技术的本科高校数字媒体专业课程教学改革与实践应用研究”(24GYB100);2024年度广州市社科规划常规课题“基于多模态交互信息的在线学习投入影响因素模型与干预策略研究”(2024GZGJ224)。

摘  要:“人工智能+”行动的启动推动人工智能与教育深度融合,为混合教学模式的变革注入了新的活力。在梳理人工智能应用于教育教学相关研究的基础上,分析混合式教学现状与存在的问题,探讨人工智能技术应用于线上+线下融合教学的方法。从智能化开放学习平台、精准化教学干预、多维动态评价体系三个方面构建“人工智能+”背景下的混合教学模式。对信息可视化技术课程进行教学实施和效果反馈,实践表明,这种教改模式有助于提高学习效率和教学质量,以期为新时代高校的相关教学改革提供有益的借鉴和参考。The launch of“Artificial Intelligence Plus”has driven the deep integration of Artificial Intelligence and education,and has breathed new vitality into the reform of the mixed teaching mode.On the basis of combing the related research on the application of artificial intelligence to education and teaching,this paper analyzes the current situation and existing problems of mixed teaching mode,discusses the methods of applying Artificial Intelligence technology to the integration of online and offline teaching,and constructs the mixed teaching mode under the background of“Artificial Intelligence Plus”from three aspects:intelligent open educational platform,targeted instructional intervention and multidimensional dynamic evaluation system.Taking the course of Information Visualization Technology as an example,the teaching implementation and effect feedback are carried out.Practice has shown that this teaching reform mode helps to improve learning efficiency and teaching quality,and it is hoped to provide beneficial reference for the relevant teaching reform in colleges and universities in the new era.

关 键 词:人工智能+ 信息可视化技术 混合式教学 教学改革 实践 

分 类 号:G642[文化科学—高等教育学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象