检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曹旺 毛亚纯[1] 文杰 丁瑞波 徐梦圆 付艳华 CAO Wang;MAO Ya-chun;WEN Jie;DING Rui-bo;XU Meng-yuan;FU Yan-hua(School of Resources and Civil Engineering,Northeastern University,Shenyang 110819,China;School of Architecture,Northeastern University,Shenyang 110819,China)
机构地区:[1]东北大学资源与土木工程学院,辽宁沈阳110819 [2]东北大学江河建筑学院,辽宁沈阳110819
出 处:《光谱学与光谱分析》2024年第12期3494-3503,共10页Spectroscopy and Spectral Analysis
基 金:国家自然科学基金项目(52074064)资助。
摘 要:铁矿品位是评价铁矿贫富程度和经济价值的重要指标,铁矿品位的检定效率对铁矿开采效率具有重大影响。鉴于高光谱图像在物质分类与含量反演等领域具有分析速度快、准确性高、无破坏性等优势,分别在可见光-近红外(VIS-NIR)与短波红外(SWIR)两个波段范围内采集鞍山式铁矿的高光谱图像,探讨基于高光谱图像实现鞍山式铁矿品位反演的可行性。首先,提取高光谱图像感兴趣区(ROI)中的平均光谱代表对应样本的光谱数据,分别采用多元散射校正(MSC)与标准正态变量变换(SNV)对其进行光谱变换。然后,分别利用蒙特卡洛无信息变量消除(MCUVE)、竞争性自适应重加权采样(CARS)和连续投影算法(SPA)提取变换前后光谱数据的特征波段。最后,利用径向基函数神经网络(RBFNN)和极限学习机(ELM)分别建立鞍山式铁矿品位的定量反演模型。结果表明,在VIS-NIR范围内的光谱数据,经MSC变换后,利用CARS提取的特征波段建立的ELM品位反演模型效果最优(R^(2)=0.90,RPD=3.02,RMSE=3.27,MAE=2.77)。将MSC-CARS-ELM模型应用于鞍山式铁矿样品的VIS-SWIR高光谱图像,能够生成像素级的铁矿品位分布图。该研究为快速、有效地实现鞍山式铁矿品位反演及可视化提供了一种新方法,在地质采矿领域具有重要的应用价值。Iron ore grade is an important index used to evaluate the degree of wealth and economic value of iron ore,and the verification efficiency of iron ore grade greatly influences the efficiency of iron ore mining.Because of the advantages of hyperspectral images in the fields of substance classification and content inversion,such as fast analysis speed,high accuracy,and non-destructive,this study collected hyperspectral images of Anshan-type iron ore in the two bands of VIS-SWIR and NIR,respectively,and discussed the feasibility of realizing grade inversion of Anshan type iron ore based on hyperspectral images.First,the average spectral representation in the ROI of the hyperspectral image is extracted,and the spectral data of the corresponding samples are transformed by multivariate scattering correction(MSC)and Standard normal variate transformation(SNV),respectively.Then,Monte Carlo uninformative variable elimination(MCUVE),competitive adaptive reweighted sampling(CARS),and successive projections algorithm(SPA)were used to extract the characteristic bands of the spectral data before and after the transformation.Finally,the quantitative inversion model of Anshan type iron ore's iron grade is established using radial basis function neural network(RBFNN)and extreme learning machine(ELM).The results show that after the MSC transformation of spectral data in the VIS-SWIR range,the ELM grade inversion model established by using the feature bands extracted by CARS has the best effect(R^(2)=0.90,RPD=3.02,RMSE=3.27,MAE=2.77).Applying the MSC-CARS-ELM model to the VIS-SWIR hyperspectral image of an Anshan-type iron ore sample can generate a pixel-level iron ore grade distribution map.This study provides a new method for realizing grade inversion and visualization of Anshan-type iron ore quickly and effectively,which has important application value in geology and mining.
关 键 词:鞍山式铁矿 高光谱图像 特征波段提取 机器学习 可视化
分 类 号:TP79[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.22.42.14