基于灰色预测-ARIMA模型的石家庄货运周转量预测  

Prediction of Freight Turnover in Shijiazhuang Based on the Grey Prediction-ARIMA Model

在线阅读下载全文

作  者:崔艺豪 朱子獒 李婷 CUI Yihao;ZHU Ziao;LI Ting(School of Management,Hebei GEO University,Shijiazhuang 050000,China;Yunnan Botanee Bio-Technology Group Co.,Ltd.,Shanghai 201800,China)

机构地区:[1]河北地质大学管理学院,河北石家庄050000 [2]云南贝泰妮生物科技集团股份有限公司,上海201800

出  处:《物流科技》2024年第22期8-11,18,共5页Logistics Sci Tech

基  金:河北省科技厅软科学智库项目“河北省科技成果转化政策体系实施效果评价及优化研究”(23557603D);石家庄科技局软科学项目“石家庄市规上工业企业科技创新绩效评价及提升路径研究”(235790085A)。

摘  要:石家庄素有“燕晋咽喉”之称,是全国重要的交通枢纽和商品物资集散地。随着物流运输业的迅猛发展,需要考虑石家庄的综合运输体系能否支撑未来区域经济的进一步发展,由此可见,石家庄市货运周转量的需求预测值得探讨研究。文章通过将灰色预测模型和ARIMA模型组合,利用多元回归方法确定组合模型权重,分别运用灰色预测、ARIMA模型及其组合模型三种模型对石家庄市的货运周转量进行预测分析。研究表明,相比单一模型,组合预测模型的预测精度更高,根据预测结果提出建议,对石家庄市物流行业的发展具有一定的参考价值。Shijiazhuang,known as"the transportaion hub of Beijing and Shanxi",is an important transportation hub and commodity distribution center in China.With the rapid development of the logistics and transportation industry,whether the comprehensive transportation system in Shijiazhuang can support the further development of the future economy is need to be considered.It follows that it is worthy of exploration and research in predicting the demand for freight turnover in Shijiazhuang.This article combines the grey prediction model and the ARIMA model,and uses the multiple regression method to determine the weights of the combination model.Three models are used to predict and analyze the freight turnover in Shijiazhuang City,including the grey prediction model,the ARIMA model and the combination model of these two.The research shows that the combination prediction model has higher prediction accuracy than the single model.Suggestions are made according to the prediction results,which provide a certain reference for the development of the logistics industry in Shijiazhuang.

关 键 词:组合预测 灰色预测 ARIMA模型 货运周转量 

分 类 号:F326[经济管理—产业经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象