基于递归特征消除选择的粒子群优化-支持向量机回归模型的滑坡位移预测方法  

A Landslide Displacement Prediction Method of Particle Swarm Optimization Combined with Support Vector Machine Regression Based on Recursive Feature Elimination Selection

在线阅读下载全文

作  者:唐菲菲 胡佳赢 马英 周泽林[2] 王俊 郝亚飞 TANG Feifei;HU Jiaying;MA Ying;ZHOU Zhelin;WANG Jun;HAO Yafei(College of Smart City,Chongqing Jiaotong University,Chognqing 402260,China;China 19th Metallurgical Group Corporation Limited,Chengdu 610031,China;CICT Connected and Intelligent Technologies Co.,Chognqing 400030,China;Explosives Corporation Limited,CGGC,Chognqing 401121,China)

机构地区:[1]重庆交通大学智慧城市学院,重庆402260 [2]中国十九冶集团有限公司,成都610031 [3]中信科智联科技有限公司,重庆400030 [4]中国葛洲坝集团易普力股份有限公司,重庆401121

出  处:《工业建筑》2024年第11期50-60,共11页Industrial Construction

基  金:重庆市技术创新与应用发展专项重点项目(CSTB2022TIAD-KPX0098);重庆市研究生联合培养基地资助项目(JDLHPYJD2021002);重庆交通大学研究生科研创新项目(2023S0131)。

摘  要:在季节性降水及水库水位变化的影响下,部分山体会产生滑坡,滑坡位移的累积位移-时间曲线表现为明显的“阶跃型”动态变形特征。针对阶跃型滑坡位移,提出基于递归特征消除(RFE)算法的粒子群优化算法(PSO)-支持向量机回归(SVR)阶跃型滑坡位移预测模型,并以新铺滑坡为例展开研究。探究了滑坡位移数据的异常值剔除及缺失值填充方法,采用基于中位数法与集合经验模态分解的方法进行异常值剔除,采用基于统计学变量的方法进行缺失值填充;然后采用指数平滑法将阶跃型滑坡的累积位移拆分为趋势项和周期项。其中对趋势项位移采用傅里叶曲线进行拟合预测;对周期项位移通过基于SVR的RFE筛选出与周期项位移相关性高的影响因子,建立周期项位移预测模型,采用PSO对预测模型参数进行优化;最后,叠加周期项与趋势项位移预测结果,得到滑坡累积位移预测值,所提模型拟合优度为0.999,均方根误差为9.974 mm,平均绝对误差为7.037 mm。与网络搜索交叉验证算法-优化支持向量机模型(GSCV、SVR模型)、遗传算法优化-支持向量机模型(GA-SVR模型)对比,该模型对于突变位移的预测能力较强,适用于阶跃型滑坡中位移加速变化时期的风险预警。Affected by the seasonal precipitation and changes in water levels of reservoirs,parts of mountains will generate landslides in which the cumulative displacement-time curve of some landslides exhibits obvious“step type”dynamic deformation characteristics.In the light of that displacement,a landslide displacement prediction model was proposed,which was combined the particle swarm optimization(PSO)algorithm with the support vector regression(SVR)based on the recursive feature elimination(RFE)algorithm.and the research was performed combined with the Xinpu landslide.Firstly,the methods of outlier removal and missing value filling for landslide displacement data were explored.Outlier rejection was adopted a median-based method with ensemble empirical mode decomposition,and missing value filling was adopted a statistical variable-based method.Then,the“step type”cumulative displacement of landslides was split into the trend and period terms by the exponential smoothing method.The displacement of the trend term was fitted by Fourier curve.For the displacement of the periodic term,the influence factors with high correlation with the displacement of the periodic term were selected based on the SVR-RFE method,and the prediction model for the displacement of the periodic term was established.Subsequently,the prediction model parameters were optimized by the PSO algorithm.Finally,the predicted displacement of the period term was superimposed on the predicted displacement of the trend term to obtain the final predicted cumulative displacement of landslides,in which the goodness of fit was 0.999,the root mean square error was 9.974 mm,and the average absolute error was 7.037 mm.Comparing the proposed model with the GSCV-SVR model and the GA-SVR model,the proposed model was of a strong predictive capability for sudden displacement and was suitable for risk warning during periods of accelerated displacement changes of“step type”displacement of landslides.In southwest China,there are many mountains and abundant rainfa

关 键 词:滑坡 位移预测 递归特征消除 支持向量机 粒子群优化算法 

分 类 号:P642.22[天文地球—工程地质学] TP18[天文地球—地质矿产勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象