年报风险信息披露模仿行为研究:基于LDA主题模型分析  

Imitation Behaviour in Risk Information Disclosure in China:An Analysis Basedonthe LDA Topic Model

在线阅读下载全文

作  者:王成龙[1,2] 吴忧 Wang Chenglong;Wu You

机构地区:[1]中南财经政法大学会计学院,湖北省武汉市430073 [2]中南财经政法大学新制度会计学研究中心,湖北省武汉市430073

出  处:《世界经济》2024年第11期183-205,共23页The Journal of World Economy

基  金:国家自然科学基金青年项目(72202233);中国博士后科学基金面上项目(2021M703623)的资助。

摘  要:中国上市公司在风险信息披露中究竟采用何种策略导致投资者风险感知不升反降?本文引入新制度理论并运用隐含狄利克雷分布主题模型,从同行模仿行为视角进行解释。研究结果表明,上市公司在披露风险时存在同行模仿行为。异质性分析结果表明,在风险信息披露中,模仿者主要是盈余波动性高、非行业龙头以及存在控股股东股权质押的公司,且模仿行为更多存在于高经济政策不确定时期。通过同行模仿,上市公司有效降低了投资者和分析师对其风险的感知水平。本文通过挖掘风险信息文本解释了中国上市公司风险信息披露为何会降低投资者风险感知,为监管层和投资者理性解读上市公司风险信息提供了理论依据。What strategies do listed companies in China adopt when disclosing risk information to reduce,rather than increase,investors'risk perception?This paper presents a new institutional theory and employs the Latent Dirichlet Allocation(LDA)topic model to explain it from a peer-imitation behaviour perspective.The study finds that there is peer-imitation behaviour among listed companies when it comes to disclosing risk information.The heterogeneity analysis indicates that the imitators in risk information disclosure are primarily companies with high earnings volatility,non-industry leaders,and those with shares pledged by controlling shareholders.Imitation behaviour is also more prevalent during periods of high economic policy uncertainty.Through peer imitation,listed companies effectively reduce the risk level perceived by investors and analysts.By analysing the textual content of risk information,this paper explains why risk information disclosure by Chinese listed companies may eventually reduce investors'risk perception,thus providing a theoretical basis for regulators and investors to rationally interpret the risk information disclosed by listed companies.

关 键 词:风险信息披露 模仿行为 新制度理论 

分 类 号:F275[经济管理—企业管理] F832.51[经济管理—国民经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象