基于RBF-ADRC控制算法的三维针刺机多电动机协同控制  

Multi-motor cooperative control of 3D needling machine based on RBF-ADRC control algorithm

在线阅读下载全文

作  者:李晟源 崔江红[1,2] 徐航[1] 胡泽翰 LI Shengyuan;CUI Jianghong;XU Hang;HU Zehan(School of Mechatronics,Zhongyuan Institute of Technology,Zhengzhou 450007,Henan,China;Advanced Textile Equipment Technology Provincial and Ministerial Co-construction Collaborative Innovation Center built by Zhongyuan University of Technology,Zhengzhou 450007,Henan,China)

机构地区:[1]中原工学院机电学院,河南郑州450007 [2]中原工学院先进纺织装备技术省部共建协同创新中心,河南郑州450007

出  处:《上海纺织科技》2024年第11期34-39,43,共7页Shanghai Textile Science & Technology

基  金:2021年度中国纺织工业联合会科技指导性项目(2021102)。

摘  要:针对纺织行业高端非织造三维针刺机多电动机协同控制问题,采用RBF神经网络与ADRC自抗扰控制算法相结合的协同控制策略,针对协同控制问题中的多电动机同步误差,采用偏差耦合控制结构,通过速度补偿器补偿电动机间的同步误差,实现了对两台永磁同步电动机为被控对象的多电动机精确协同控制。通过试验验证,该控制策略能够有效地减小同步误差,提高设备的协同性能。仿真结果表明,提出的基于RBF-ADRC控制算法的多电动机协同控制器,较传统PID控制和ADRC控制具有响应迅速,超调量极小,稳定性高等优势,可有效提高针刺设备的生产效率和生产质量。A synergistic control strategy combining RBF neural network and ADRC disturbance rejection control algorithm is adopted for the advanced nonwoven three-dimensional needle punching machine in the textile industry.To address the synchronization error in the multi-motor collaborative control problem,a bias coupling control structure is employed.The synchronization error between two permanent magnet synchronous motors,serving as controlled objects,is compensated using a velocity compensator,achieving precise collaborative control of multiple motors.Experimental validation demonstrates the effectiveness of this control strategy in reducing synchronization error and improving the collaborative performance of the equipment.Simulation results show that the proposed multi-motor collaborative controller based on the RBF-ADRC control algorithm outperforms traditional PID control and ADRC control in terms of rapid response,minimal overshoot,and high stability,effectively enhancing the production efficiency and quality of the needle punching equipment.

关 键 词:针刺机 多电动机协同控制 RBF神经网络 自抗扰控制算法 

分 类 号:TS103.7[轻工技术与工程—纺织工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象