检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:顾亦然[1,2] 史家旺 黄丽亚[3] GU Yiran;SHI Jiawang;HUANG Liya(College of Automation&College of Artificial Intelligence,Nanjing University of Posts and Telecommunications,Nanjing 210023,China;Center of Smart Campus Research,Nanjing University of Posts and Telecommunications,Nanjing 210023,China;School of Electronic and Optical Engineering&Microelectronics,Nanjing University of Posts and Telecommunications,Nanjing 210023,China)
机构地区:[1]南京邮电大学自动化学院人工智能学院,南京210023 [2]南京邮电大学智慧校园研究中心,南京210023 [3]南京邮电大学电子与光学工程学院微电子学院,南京210023
出 处:《小型微型计算机系统》2024年第12期2929-2935,共7页Journal of Chinese Computer Systems
基 金:国家自然科学基金项目(61977039)资助。
摘 要:目前主流的基于用户—项目二分图表征学习的推荐系统主要采用度归一化或平均池化的方法作为图上的近邻消息聚合策略,来学习用户和项目的表征向量.但是这两种聚合操作忽略了不同相邻节点对目标节点的重要性不同,从而导致最终刻画的用户和项目的表征表示不够准确.为此,本文提出了一种基于多头图注意力机制的神经协同过滤推荐模型(MGAT4Rec)来显示的建模目标节点与邻居节点之间的亲和力.该模型采用图注意力机制来捕获不同相邻节点的重要性并降低噪声信息的干扰,实现了对近邻节点信息的可解释性聚合;在此基础上,为了学习到更丰富的节点表征,通过使用多头图注意力机制来学习节点在不同潜在空间下的表征,将不同空间下的表征进行融合得到最终节点的表征向量.在MovieLens-100K和Amazon两个公开的数据集上进行了对比实验,MGAT4Rec在Recall@10和NDCG@10两个性能指标上相较于基线模型均有所提升.Currently,the mainstream recommendation systems based on user-item bipartite graph representation learning mainly use degree normalization or Mean-pooling method as the neighbor aggregation scheme on the graph to learn the representation vectors of users and items.However,such aggregation operation ignores the varying importance of adjacent nodes to the target node,which leads to inaccurate embedding representations of users and items.Therefore,a neural collaborative filtering recommendation model(MGAT4Rec)based on multi-head graph attention mechanism is proposed in this paper to explicitly model the affinity between the target node and its neighboring nodes.MGAT4Rec leverages graph attention mechanism to capture the importance of different adjacent nodes and reduce the impact of noise information,obtaining interpretable aggregation of neighbor node information;based on this,in order to learn richer node representations,the proposed model employs multi-head graph attention mechanism to learn node representations in different latent spaces,and integrates the representations in different spaces to obtain the final representation vector of nodes.Comparative experiments conducted on two public datasets,MovieLens-100K and Amazon,and MGAT4Rec outperformed baseline models in both Recall@10 and NDCG@10 evaluation metrics.
关 键 词:协同过滤 节点重要性 图注意力机制 可解释性聚合
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.163.13