基于机器学习方法的GH4175高温合金高温塑性与成分关联研究  

Relationship Between High-temperature Plasticity and the Composition of the GH4175 Superalloy Discovered via Machine Learning

在线阅读下载全文

作  者:刘宜瑞 刘有云[2] 赵佳军 虎小兵 陈一鸣 赵张龙 李俊杰[1] 王志军[1] 王锦程[1] LIU Yirui;LIU Youyun;ZHAO Jiajun;HU Xiaobing;CHEN Yiming;ZHAO Zhanglong;LI Junjie;WANG Zhijun;WANG Jincheng(State Key Laboratory of Solidification Processing,Northwestern Polytechnical University,Xi'an 710072,China;93147 Troops of the Chinese People's Liberation Army)

机构地区:[1]西北工业大学凝固技术国家重点实验室,陕西西安710072 [2]中国人民解放军93147部队

出  处:《铸造技术》2024年第11期1049-1060,共12页Foundry Technology

基  金:国家重点研发计划(2023YFB4606502)。

摘  要:GH4175合金是新型难变形高温合金的典型代表,通过成分优化提升其高温单相区变形能力,是避免该合金铸锭开坯过程中开裂的重要前提。综合利用相图热力学计算、高温拉伸实验及机器学习方法,通过成分设计空间逐层筛选优化以及自适应学习策略,获得了影响该合金800℃γ′相体积分数、γ′相完全溶解温度和合金初始液化温度的关键元素,建立了上述元素含量与高温伸长率之间的关系模型,明确了在保证一定热加工温度窗口和800℃γ′相体积分数的前提下,同时具备优异高温塑性的合金成分范围及微观组织特征。The GH4175 alloy is a typical new difficult-to-deform superalloy.Optimizing its composition to enhance its deformation capability in the high-temperature single-phase region is a crucial prerequisite for preventing cracking during the cogging process of this alloy.By combining thermodynamic calculations,high-temperature tensile experiments,and machine learning methods,the composition of GH4175 was optimized.The key compositional elements that influence theγ′phase volume fraction at 800℃,theγ′phase dissolution temperature,and the alloy melting temperature are identified via design space screening and adaptive learning strategies.A relationship model between the content of these elements and high-temperature elongation is established,clarifying the compositional range that ensures excellent high-temperature ductility while maintaining a reasonable processing window andγ′phase volume fraction at 800℃.

关 键 词:GH4175 机器学习 高温塑性 成分优化 

分 类 号:TG131[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象