Entropy-based guidance and predictive modelling of pedestrians’visual attention in urban environment  

在线阅读下载全文

作  者:Qixu Xie Li Zhang 

机构地区:[1]Department of Architecture,School of Architecture,Tsinghua University,Beijing 100084,China [2]Urban Ergonomics Lab,School of Architecture,Tsinghua University,Beijing 100084,China

出  处:《Building Simulation》2024年第10期1659-1674,共16页建筑模拟(英文)

基  金:supported by the China National Key R&D Program(No.2022YFC3801500);the National Natural Science Foundation of China(No.52278023)and Cyrus Tang Foundation.

摘  要:Selective visual attention determines what pedestrians notice and ignore in urban environment.If consistency exists between different individuals’visual attention,designers can modify design by underlining mechanisms to better meet user needs.However,the mechanism of pedestrians’visual attention remains poorly understood,and it is challenging to forecast which position will attract pedestrians more in urban environment.To address this gap,we employed 360°video and immersive virtual reality to simulate walking scenarios and record eye movement in 138 participants.Our findings reveal a remarkable consistency in fixation distribution across individuals,exceeding both chance and orientation bias.One driver of this consistency emerges as a strategy of information maximization,with participants tending to fixate areas of higher local entropy.Additionally,we built the first eye movement dataset for panorama videos of diverse urban walking scenes,and developed a predictive model to forecast pedestrians’visual attention by supervised deep learning.The predictive model aids designers in better understanding how pedestrians will visually interact with the urban environment during the design phase.

关 键 词:visual attention PEDESTRIAN EYE-TRACKING local entropy deep learning urban ergonomics 

分 类 号:TU984[建筑科学—城市规划与设计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象