检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Kehao Yang Song Zheng Tianhu Yu Aceng Sambas Muhamad Deni Johansyah Hassan Saberi-Nik Mohamad Afendee Mohamed 杨轲皓;郑松;余天虎;Aceng Sambas;Muhamad Deni Johansyah;Hassan Saberi-Nik;Mohamad Afendee Mohamed(School of Data Science,Zhejiang University of Finance & Economics,Hangzhou 310018,China;Department of Mathematics,Luoyang Normal University,Luoyang 471934,China;Faculty of Informatics and Computing,Universiti Sultan Zainal Abidin,Besut Campus,22200,Terengganu,Malaysia;Department of Mechanical Engineering,Universitas Muhammadiyah Tasikmalaya,Tasikmalaya,Jawa Barat,46196,Indonesia;Department of Mathematics,Universitas Padjajdaran,Jatinangor,Kabupaten Sumedang 45363,Indonesia;Department of Mathematics and Statistics,University of Neyshabur,Neyshabur 9319774400,Iran)
机构地区:[1]School of Data Science,Zhejiang University of Finance & Economics,Hangzhou 310018,China [2]Department of Mathematics,Luoyang Normal University,Luoyang 471934,China [3]Faculty of Informatics and Computing,Universiti Sultan Zainal Abidin,Besut Campus,22200,Terengganu,Malaysia [4]Department of Mechanical Engineering,Universitas Muhammadiyah Tasikmalaya,Tasikmalaya,Jawa Barat,46196,Indonesia [5]Department of Mathematics,Universitas Padjajdaran,Jatinangor,Kabupaten Sumedang 45363,Indonesia [6]Department of Mathematics and Statistics,University of Neyshabur,Neyshabur 9319774400,Iran
出 处:《Chinese Physics B》2024年第11期223-235,共13页中国物理B(英文版)
基 金:Project jointly supported by the National Natural Science Foundation of China(Grant No.12372013);Program for Science and Technology Innovation Talents in Universities of Henan Province,China(Grant No.24HASTIT034);the Natural Science Foundation of Henan Province,China(Grant No.232300420122);the Humanities and Society Science Foundation from the Ministry of Education of China(Grant No.19YJCZH265);China Postdoctoral Science Foundation(Grant No.2019M651633);First Class Discipline of Zhejiang-A(Zhejiang University of Finance and Economics Statistics),the Collaborative Innovation Center for Data Science and Big Data Analysis(Zhejiang University of Finance and Economics-Statistics).
摘 要:This paper delves into the dynamical analysis,chaos control,Mittag–Leffler boundedness(MLB),and forecasting a fractional-order financial risk(FOFR)system through an absolute function term.To this end,the FOFR system is first proposed,and the adomian decomposition method(ADM)is employed to resolve this fractional-order system.The stability of equilibrium points and the corresponding control schemes are assessed,and several classical tools such as Lyapunov exponents(LE),bifurcation diagrams,complexity analysis(CA),and 0–1 test are further extended to analyze the dynamical behaviors of FOFR.Then the global Mittag–Leffler attractive set(MLAS)and Mittag–Leffler positive invariant set(MLPIS)for the proposed financial risk(FR)system are discussed.Finally,a proficient reservoir-computing(RC)method is applied to forecast the temporal evolution of the complex dynamics for the proposed system,and some simulations are carried out to show the effectiveness and feasibility of the present scheme.
关 键 词:FOFR system dynamical analysis CONTROL BOUNDEDNESS forecasting
分 类 号:F830[经济管理—金融学] O213[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49