管道IMU弯曲应变解算算法优化与全尺寸试验验证  被引量:1

Optimization of IMU-based bending strain solving algorithm and full-scale experimental validation

在线阅读下载全文

作  者:石彤 刘啸奔 张琳 王军 李睿 谢婷 冯庆善 黄启玉[1] SHI Tong;LIU Xiaoben;ZHANG Lin;WANG Jun;LI Rui;Xie Ting;FENG Qingshan;HUANG Qiyu(China University of Petroleum (Beijing)//National Engineering Research Center for Pipeline Safety//MOE Key Laboratory of Petroleum Engineering//Beijing Key Laboratory of Urban Oil and Gas Distribution Technology;China Oil & Gas Pipeline Network Corporation;Hunan Xiangtou Natural Gas Investment Co.Ltd.)

机构地区:[1]中国石油大学(北京)·油气管道输送安全国家工程研究中心·石油工程教育部重点实验室·城市油气输配技术北京市重点实验室 [2]国家石油天然气管网集团有限公司 [3]湖南湘投天然气投资有限公司

出  处:《油气储运》2024年第11期1269-1276,共8页Oil & Gas Storage and Transportation

基  金:国家重点研发计划“中俄管道重大风险防控与安全保障关键技术”,2022YFC3070100;北京市科协“青年人才托举工程”项目“高钢级管道环焊缝可靠性评价方法研究”,BYESS2023261;国家自然科学基金资助项目“火驱服役环境多场耦合作用下低铬套管钢失效机理研究”,52304013;国家管网科学研究与技术开发项目“高钢级管道环焊缝失效机理研究”,WZXGL202105;国家管网科学研究与技术开发项目“高钢级管道环焊缝缺陷检测评价技术研究”,WZXGL202104;中国石油大学(北京)科研基金资助项目“掺氢管道环焊缝失效机理与评价方法研究”,2462023BJRC005;国家管网集团科技研发项目“X80管道材料与环焊缝性能分散性机理及控制要求研究”,CLZB202301。

摘  要:【目的】基于惯性导航(Inertial Mapping Unit,IMU)内检测器的管道弯曲应变识别技术目前已被国内外广泛应用。IMU内检测器通过陀螺仪获取的俯仰角、航向角等进行解算并获取管道全线弯曲应变,由于内检测器实际运行时存在因自身尺寸等原因造成的检测轨迹线偏移,导致IMU检测弯曲应变与管道真实弯曲应变之间存在一定误差。【方法】基于实际内检测器尺寸建立无异常振动等干扰的IMU内检测器仿真模型,构建管径508 mm管道不同弯曲应变条件下的仿真数据库,提出基于神经网络-决策树深度学习模型的解算优化算法,开展了误差分析与弯曲应变解算算法研究。开展全尺寸管道弯曲应变牵拉试验,验证解算优化算法的可行性与准确性。【结果】随着管道弯曲应变增大,IMU内检测器检测弯曲应变与管道真实弯曲应变之间的误差随之增大。解算后弯曲应变数据的均方误差、误差协方差、误差标准差分别由0.0070、0.0049、0.0702降低至0.0012、0.0016、0.0126,而表示相关性的决定系数由0.443增至0.981。采用全尺寸牵拉试验验证该算法,弯曲应变与应变片检测真弯曲应变之间误差分别降低了79.6%、79.4%、76.0%。【结论】通过有限元模拟与全尺寸牵拉试验数据验证了所提出解算优化算法的可行性与准确性,可为基于IMU内检测的管道真弯曲应变获取提供技术支撑与指导。(图9,表2,参25)[Objective]The pipe bending strain identification technology based on an inertial mapping unit(IMU)in-line detector has seen extensive applications in China and abroad.IMUs obtain bending strains along entire pipelines through a solving process,using pitch angles and heading angles acquired by a gyroscope.However,deviations from the detection path may occur during the practical in-line detector operation,due to the sizes of IMUs and other factors,leading to inevitable errors between the bending strains identified by IMUs and the actual pipeline conditions.[Methods]A simulation model was developed for IMU in-line detectors based on their actual size,without abnormal vibrations and other interferences.In addition,a simulation database was created for pipelines with a diameter of 508 mm under varying bending strain conditions.Moreover,a solving algorithm optimized through an ANNExtraTree deep learning model was introduced.These tools were leveraged for error analysis and to delve into the bending strain solving algorithm.Furthermore,full-scale pulling experiments were conducted on pipeline bending strains,to verify the feasibility and accuracy of the optimized solving algorithm.[Results]This study revealed that as pipeline bending strain increased,the errors between IMU detections and true bending strains grew.The mean square error,error covariance and error standard deviation of the bending strain data derived from the optimized solving process decreased from 0.0070,0.0049,0.0702 to 0.0012,0.0016,0.0126respectively,while the coefficient of determination,indicating correlation,rose from 0.443 to 0.981.Furthermore,the full-scale pulling experiments conducted to validate the algorithm revealed substantial reductions in errors between bending strains computed by the optimized solving algorithm and those detected by a strain gauge at 79.6%,79.4%,and 76.0%,respectively.[Conclusion]The proposed optimized solving algorithm is verified feasible and accurate through finite element simulations and full-scale pulling experimen

关 键 词:惯性导航 真实弯曲应变 仿真重构 全尺寸试验 误差分析 解算算法 

分 类 号:TE88[石油与天然气工程—油气储运工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象