A Distributed Adaptive Second-Order Latent Factor Analysis Model  

在线阅读下载全文

作  者:Jialiang Wang Weiling Li Xin Luo 

机构地区:[1]the School of Computer Science and Technology,Dongguan University of Technology [2]the College of Computer and Information Science,Southwest University

出  处:《IEEE/CAA Journal of Automatica Sinica》2024年第11期2343-2345,共3页自动化学报(英文版)

基  金:supported in part by the National Natural Science Foundation of China (62102086, 62272078);the Guangdong Basic and Applied Basic Research Foundation (2022A1515140102, 2021B1515140046);the Guangdong Province Universities and College Pearl River Scholar Funded Scheme (2019)。

摘  要:Dear Editor,This letter presents a distributed adaptive second-order latent factor(DAS) model for addressing the issue of high-dimensional and incomplete data representation. Compared with first-order optimizers, a second-order optimizer has stronger ability in approaching a better solution when dealing with the non-convex optimization problems, thus obtaining better performance in extracting the latent factors(LFs) well representing the known information from high-dimensional and incomplete data.

关 键 词:REPRESENTATION INCOMPLETE APPROACHING 

分 类 号:O224[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象