变分贝叶斯推断的非平稳杂波抑制STAP算法  

Variational Bayesian Inference STAP Algorithm for Non-stationary Clutter Suppression

在线阅读下载全文

作  者:张威 李港 王效瑞 张文斌 章涛[1] ZHANG Wei;LI Gang;WANG Xiaorui;ZHANG Wenbin;ZHANG Tao(Tianjin Key Laboratory for Advanced Signal Processing,Civil Aviation University of China,Tianjin 300300,China)

机构地区:[1]中国民航大学天津市智能信号与图像处理重点实验室,天津300300

出  处:《现代雷达》2024年第11期29-37,共9页Modern Radar

基  金:中央高校基本科研业务费中国民航大学资助专项(3122019048)。

摘  要:现有的杂波谱稀疏恢复空时自适应处理(STAP)均假设不同距离单元的杂波训练样本满足平稳性条件,但实际系统中存在很多非理想因素,如杂波内部运动(ICM),会造成杂波模型失配从而导致杂波协方差矩阵(CCM)估计不准确,进而使得STAP处理算法的性能急剧下降。文中针对ICM情况下的非平稳杂波抑制问题,提出了一种变分贝叶斯推断的非平稳杂波抑制STAP算法。首先,通过一种非平稳杂波模型将多个杂波训练样本之间的非平稳性模型化;然后,引入变分贝叶斯推断方法对杂波空时功率谱进行稀疏恢复;最后,估计CCM实现非平稳杂波的有效抑制。仿真实验表明,在存在ICM的非平稳杂波环境情况下,文中方法效果优于已有的稀疏贝叶斯学习STAP方法。It is assumed in existing clutter sparse recovery space-time adaptive processing(STAP)that clutter training samples from different range cells satisfy the stationarity condition.However,there are many non-ideal factors in the actual systems,such as the internal clutter motion(ICM),which will cause clutter model mismatch,resulting in inaccurate estimation of the clutter-plus-noise covariance matrix(CCM),and then the performance of STAP algorithm will be greatly reduced.In this paper,a variational Bayesian inference STAP algorithm for non-stationary clutter suppression is proposed to address the problem of non-stationary clutter suppression under ICM.First,a non-stationary clutter model is used to model the nonstationarity among the clutter training samples.Then,the variational Bayesian inference method is introduced to perform sparse recovery of the clutter space-time power spectrum.Finally,the CCM is estimated to achieve effective suppression of non-stationary clutter.Simulation experiments show that the proposed method is better than the existing sparse Bayesian learning STAP method in the case of non-stationary clutter environment with ICM.

关 键 词:空时自适应处理 杂波内部运动 非平稳杂波 稀疏贝叶斯 杂波抑制 

分 类 号:TN959.73[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象