检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈文杰 苏振兴 孙先涛 刘远远 胡祥涛 智亚丽 CHEN Wen-jie;SU Zhen-xing;SUN Xian-tao;LIU Yuan-yuan;HU Xiang-tao;ZHI Ya-li(School of Electrical Engineering and Automation,Anhui University,Hefei 230601,China;Anhui Engineering Laboratory of Human-Robot Collaboration System and Intelligent Equipment,Anhui University,Hefei 230601,China)
机构地区:[1]安徽大学电气工程与自动化学院,合肥230601 [2]安徽大学安徽省人机共融系统与智能装备工程实验室,合肥230601
出 处:《吉林大学学报(工学版)》2024年第10期3050-3057,共8页Journal of Jilin University:Engineering and Technology Edition
基 金:国家自然科学基金项目(51975002)。
摘 要:针对外骨骼设备语音系统在实际工作环境中受到环境噪声的影响导致语音指令识别性能差的问题,本文提出基于离散正交斯托克韦尔变换的伽马通滤波器频率倒谱系数的语音特征,结合离散路径变换表征语音信号能量与过零率的时域信息,形成混合特征。在低信噪比情况下,考虑特征之间的冗余性、不相关性和信息互补性,采用改进的相关性快速过滤特征选择算法获取最优特征子集,并将其用于外骨骼设备控制命令的语音系统。实验结果表明:本文方法在低信噪比下更具有鲁棒性和稳健性,在信噪比为零的粉红噪声下,较传统梅尔倒谱系数识别率提高20%左右。In actual working environments,exoskeleton devices for speech systems have poor voice command recognition performance due to the influence of environmental noise.This paper presents speech characteristics based on the Gammatone Frequency Cepstrum Coefficient using discrete orthogonal Stockwell transform.Time domain information of speech signal energy and zero crossing rate is characterized by discrete path transformation and composed into hybrid features.Redundancy,irrelevance,and information complementarity between the features are considered under low signal-to-noise ratios.The improved correlation fast filtering feature selection algorithm is used to obtain the optimal feature subset for the voice system of exoskeleton device control commands.Experimental results show that the optimized hybrid features are more robust under low signal-to-noise ratios,and the recognition rate of traditional Mel cepstral coefficients improves by about 20% under pink noise with zero signal-to-noise ratios.
关 键 词:外骨骼设备 离散正交斯托克韦尔变换 离散路径变换 特征选择 特征提取
分 类 号:TN912.3[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.220.23.205