检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:程梁华 黄瑞雪 沈鑫 CHENG Lianghua;HUANG Ruixue;SHEN Xin(College of Computer Science,Chongqing University,Chongqing 400044,China;Key Laboratory of Dependable Service Computing in Cyber Physical Society(Chongqing University),Ministry of Education,Chongqing 400044,China;Department of Logistics Command,Army Logistics University,Chongqing 401331,China)
机构地区:[1]重庆大学计算机学院,重庆400044 [2]信息物理社会可信服务计算教育部重点实验室(重庆大学),重庆400044 [3]解放军陆军勤务学院勤务指挥系,重庆401331
出 处:《计算机科学》2024年第12期190-198,共9页Computer Science
基 金:国家自然科学基金(62172063)。
摘 要:日益突出的停车矛盾导致城市道路违停现象严重,给城市交通带来巨大安全隐患。因此,及时有效地监测并处理违停事件对于保障城市交通安全至关重要。然而,现有基于人工巡检和固定摄像头的违停监测方式存在效率低、监测范围受限等缺点,难以满足大规模城市违停监管的需求。群车感知作为一种新兴感知范式,通过激励用户在行车过程中采集道路视频并上传至云端进行监测,能为大规模、低成本的城市违停监管提供重要手段。然而车载视频场景十分复杂,这导致了车辆追踪目标的高丢失性和违停判断的高复杂性,给实现精准违停检测提出了严峻挑战。为应对上述挑战,提出适于高动态视频场景下的城市道路违停检测算法。具体地,首先通过对车载视频进行多车辆目标追踪,以跨视频帧追踪获取车辆图像信息;然后通过动态视觉测距将目标车辆图像信息转换为真实场景中的相对距离变化,并结合车间相互运动实现违停判断;最后,基于重庆市道路数据集对所提算法进行性能评估。实验结果表明,所提算法的违停车辆检测精度为87.1%,相比3种对比算法平均提高21.9%,且在不同违停场景下均表现出优异检测性能。The increasing parking conflicts have led to serious parking violations on urban roads,posing a huge safety hazard to urban traffic.Therefore,timely and effective monitoring and handling of illegal parking events is essential to ensure urban traffic safety.However,existing illegal parking monitoring methods based on manual patrolling and fixed-point surveillance cameras have disadvantages such as low efficiency and limited monitoring range,which makes it difficult to meet the demand for large-scale urban monitoring.As an emerging sensing paradigm,vehicular crowdsensing can provide promising opportunities for large-scale and low-cost urban parking monitoring by motivating users to collect road videos while driving and upload them to the cloud.However,the complexity of in-vehicle video scenes,which leads to a high loss of vehicle target tracking and high complexity of parking judgment,poses a serious challenge to achieving accurate illegal on-road parking detection.To solve the above challenges,we propose an urban illegal on-road parking detection algorithm for high dynamic video scenarios.Specifically,first,we obtain vehicle image information across video frames through multi-vehicle target tracking on in-vehicle videos,Then,we convert the target vehicle image information into relative distance changes in real scenes through dynamic visual ranging and integrate it with the inter-vehicle movement to achieve the judgment of illegal parking.Finally,the performance of the proposed algorithm is evaluated based on the road dataset in Chongqing City.Experimental results show that the proposed algorithm achieves a detection accuracy of 87.1%for illegal parking vehicles,which is 21.9%higher than three baselines on average,and it shows excellent detection performance in different illegal parking scenarios.
关 键 词:违章停车检测 群车感知 车载视频 多目标追踪 动态视觉测距
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7