基于潮流引导神经网络的配电网贝叶斯状态估计  

Bayesian State Estimation for Distribution Networks Based on Power Flow-informed Neural Networks

在线阅读下载全文

作  者:梁栋[1,2] 刘啸宇 曾林 孙智卿 王守相 LIANG Dong;LIU Xiaoyu;ZENG Lin;SUN Zhiqing;WANG Shouxiang(State Key Laboratory of Reliability and Intelligence of Electrical Equipment(Hebei University of Technology),Tianjin 300401,China;Hebei Smart Electrical Distribution and Utilization Equipment Industry Technology Institute,Shijiazhuang Kelin Electric Corporation,Shijiazhuang 050222,China;School of Electrical and Computer Engineering,Cornell University,New York 14853,USA;Hangzhou Power Supply Company,State Grid Zhejiang Electric Power Co.,Ltd.,Hangzhou 310000,China;Key Labora-tory of the Ministry of Education on Smart Power Grids(Tianjin University),Tianjin 300072,China)

机构地区:[1]省部共建电工装备可靠性与智能化国家重点实验室(河北工业大学),天津300401 [2]石家庄科林电气股份有限公司河北省智能配用电装备产业技术研究院,石家庄050222 [3]康奈尔大学电气与计算机工程学院,纽约14853 [4]国网浙江省电力有限公司杭州供电公司,杭州310000 [5]教育部智能电网重点实验室(天津大学),天津300072

出  处:《高电压技术》2024年第11期4864-4874,共11页High Voltage Engineering

基  金:河北省自然科学基金(E2021202053);天津市自然科学基金(22JCQNJC00160);河北省省级科技计划(20311801D);中央引导地方科技发展资金(226Z2102G)。

摘  要:针对量测不足条件下配电网状态估计方法精度较低的问题,提出了基于潮流引导神经网络的配电网贝叶斯状态估计方法。首先,基于各节点的历史数据学习注入有功、无功功率的2维高斯混合概率分布,据此进行蒙特卡洛抽样和潮流计算,以获取用于神经网络训练的丰富样本;其次,以最小化状态估计误差和潮流方程失配量为目标,建立了基于潮流引导神经网络的配电网贝叶斯状态估计模型,通过在损失函数中融入潮流物理损失惩罚项,获取满足电网运行约束的一致解;再次,采用BOHB(贝叶斯优化+Hyperband)方法对神经网络超参数进行优化,并提出了基于迁移学习的拓扑变化和分接头调整条件下的自适应方法;最后,实际数据和三相平衡/不平衡配电网的测试结果表明,所提方法较基于伪量测的状态估计方法和无潮流引导的贝叶斯估计方法估计精度更高,且在拓扑变化和分接头调整时具有较好的自适应性能。Driven by the low accuracy problem of existing distribution network state estimation(SE)methods when measurements are limited,a Bayesian SE method is proposed for distribution networks based on a novel power flow-informed neural network(PFINN).Firstly,the two-dimensional Gaussian mixture probability distribution of real and reactive power injection is learned for each node using historical data;thereby,abundant samples can be obtained for neural network training by Monte Carlo sampling and power flow calculation.Then,with the goal of minimizing the SE error and power flow equation violation,a Bayesian SE model is established for distribution networks based on the PFINN.Physics loss penalty is introduced into the loss function to constrain the output to be consistent with system oper-ating constraints.Furthermore,the BOHB method is adopted to optimize the hyperparameters of the neural network,while transfer learning is introduced to adapt to changes of network topologies and on-load tap changers.Finally,test results using field data and balanced/unbalanced distribution networks show that the proposed method has better estimation accuracy than the pseudo-measurement-based SE method and the Bayesian SE method without power flow informing.Meanwhile,the proposed method achieves good adaptation performance to topology and tap changes.

关 键 词:潮流引导 神经网络 贝叶斯状态估计 配电网 迁移学习 

分 类 号:TM73[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象