检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于爽 叶俊民[2] 吴林静[1] 尹兴翰 罗晟 刘清堂[1] YU Shuang;YE Junmin;WU Linjing;YIN Xinghan;LUO Sheng;LIU Qingtang(Faculty of Artificial Intelligence in Education,Central China Normal University,Wuhan Hubei 430079;School of Computer,Central China Normal University,Wuhan Hubei 430079)
机构地区:[1]华中师范大学人工智能教育学部,湖北武汉430079 [2]华中师范大学计算机学院,湖北武汉430079
出 处:《电化教育研究》2024年第12期75-82,共8页E-education Research
基 金:2020年国家社科基金后期资助项目“基于短文本的学习分析理论与实践”(项目编号:20FTQB020)。
摘 要:人工智能技术的快速发展推动了智能协作学习环境的兴起。在此背景下,学习者的提问能力尤为关键,它能够直接增强学习者与智能系统的互动,提升学习体验和效果。然而,目前鲜有研究关注学习者的提问能力对其认知过程的影响。文章旨在探索智能协作学习环境中,学习者的提问能力如何影响他们的认知过程。通过对学习者提问数据和在线协作话语的分析,研究发现学习者的提问能力对认知过程存在影响,具体表现为:高提问能力学习者表现出更高水平的智能信息整合能力,能够更多地转述和应用从智能系统中获得的意见;高提问能力学习者呈现出“共识解释发展”的认知建构方式,而低提问能力学习者呈现出“辩证论证”的认知建构方式;高提问能力学习者展现出持续的高认知水平,而低提问能力学习者在协作启动阶段容易陷入无关话题困扰,讨论效率不高。基于此,文章提出了提升学习者人工智能素养与提问能力、细化共识解释与辩证论证教学策略以及开展智能协作学习环境下的纵向研究等建议。The rapid development of artificial intelligence technology has propelled the rise of intelligent collaborative learning environments.In this context,learners'questioning ability is particularly crucial,as they can directly enhance the interaction between learners and intelligent systems and improve the learning experience and outcomes.However,few studies have focused on the impact of learners'questioning ability on their cognitive processes.This study aims to explore how learners'questioning ability affects their cognitive processes in intelligent collaborative learning environments.Through the analysis of learners'questioning data and online collaborative discourses,it is found that learners'questioning ability has an impact on their cognitive processes,as shown in the following:learners with high questioning ability demonstrate a higher level of intelligent information integration and are capable of paraphrasing and applying the opinions obtained from the intelligent system more effectively.Learners with high questioning ability exhibit a"consensus explanation development"cognitive construction mode,whereas learners with low questioning ability display a"dialectical argumentation"cognitive construction mode.Learners with high questioning ability demonstrate sustained high levels of cognitive engagement,whereas learners with low questioning ability tend to get caught up in irrelevant topics during the initiation phase of collaboration,resulting in inefficient discussions.Based on this,this study proposes recommendations to enhance learners'AI literacy and questioning ability,refine teaching strategies for consensus interpretation and dialectical argumentation,and conduct longitudinal studies in intelligent collaborative learning environments.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.189.171.102