检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:鞠美玉 徐大专[1] 许欢 JU Meiyu;XU Dazhuan;XU Huan(College of Electronic and Information Engineering,Nanjing University of Aeronautics&Astronautics,Nanjing 211106,China)
机构地区:[1]南京航空航天大学电子信息工程学院,南京211106
出 处:《数据采集与处理》2024年第6期1326-1332,共7页Journal of Data Acquisition and Processing
基 金:国家自然科学基金(62271254)。
摘 要:最大后验(Maximum a posteriori,MAP)是最常用的参数估计方法。然而,MAP方法主要关注后验分布最大峰值的位置,没有充分利用后验分布的完整信息。本文基于相对熵,提出了一种最小散度(Minimum divergence,MD)雷达测距估计方法。首先推导参数的后验分布,然后构造一个与其相似的分布,通过寻找二者散度的最小值得到估计值。仿真结果表明,在雷达测距场景下,MD算法的性能与MAP算法相比,获得了约1 dB的增益,具有较好的估计性能。The maximum a posteriori(MAP)algorithm is the most commonly used parameter estimation method.However,the MAP algorithm focuses on the position of the maximum peak of the posterior distribution and does not fully utilize the complete information of the posterior distribution.This article proposes a minimum divergence(MD)radar ranging estimation method based on relative entropy.Firstly,the posterior distribution of the parameters is derived.Secondly,a distribution similar to them is constructed.Therefore,the value is estimated by finding the minimum value of their divergence.Simulation results indicate that in radar ranging scenarios,the MD algorithm achieves approximately 1 dB gain in performance compared to the MAP algorithm,demonstrating its superior estimation performance.
分 类 号:TN911[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7