检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:苏帅林 甘博敏 龙杰 刘宇晨 盖小雷 张冀武 SU Shuailin;GAN Bomin;LONG Jie;LIU Yuchen;GAI Xiaolei;ZHANG Jiwu(Faculty of Mechanical and Electrical Engineering,Kunming University of Science and Technology,Kunming 650550,China;Yunnan Tobacco Quality Supervision and Testing Station,Kunming 650500,China)
机构地区:[1]昆明理工大学机电工程学院,昆明650550 [2]云南省烟草室质量监督监测站,昆明650500
出 处:《计算机工程与应用》2024年第24期250-259,共10页Computer Engineering and Applications
基 金:中国烟草总公司云南省烟草公司重点项目(2021530000241012)。
摘 要:针对目前烟叶主脉的分析过程自动化低,难以应对复杂烟叶主脉提取与识别的问题,提出一种基于坐标注意力(coordinate attention,CA)与混合联接空洞空间金字塔池化(mixed-connections atrous spatial pyramid pooling,MASPP)的烟叶主脉轻量级语义分割方法。该算法以DeepLabV3+网络模型为框架,采用轻量级MobileNetV2替换原始框架中的Xception网络,以“扩充-提取-压缩”方式进行主干特征提取,减少网络模型参数量;引入坐标注意力机制加强对烟叶主脉细微特征的学习能力,改善分割主脉时与主脉真实分布相比较所存在的区域错分情况;采用“混联密接采样”的MASPP结构替代原始网络模型中的空洞空间卷积池化金字塔,改善烟叶主脉分割存在的断续分割情况。实验结果表明,与原始的DeepLabV3+语义分割算法相比较,训练时间从635 min缩减为311 min,平均交互比(mIOU)达到80.66%,平均像素精度(mPA)达到91.96%,网络模型参数量压缩85.32%,储存空间降为30.63 MB。在保证分割精度的同时减少模型训练时间,为烟叶主脉分割提供了新的思路和方法。Aiming at the current problem of low automation in the process of analysing the main veins of tobacco leaves,which makes it difficult to cope with the extraction and recognition of complex main veins of tobacco leaves,a light-weight semantic segmentation of the main veins of tobacco leaves by integrating coordinate attention and mixed-connections atrous spatial pyramid pooling(MASPP)is proposed.The algorithm takes DeepLabV3+network model as the frame-work,and adopts lightweight MobileNetV2 to replace the Xception network in the original framework,and carries out the main feature extraction in the way of“expanding-extracting-compressing”,so as to reduce the number of parameters of the network model,and introduces the coordinate attention mechanism to strengthen the learning ability of subtle features of main veins,and improves the learning ability of subtle features of main veins,and improves the learning ability of subtle features of main veins of the leaf.The introduction of the coordinate attention mechanism enhances the learning ability of the subtle features of the main veins of the tobacco leaves,and improves the regional misclassification of the main vein segmentation compared with the real distribution of the main veins.The MASPP structure of“mixed-connected dense sampling”is used to replace the empty space convolution pooling pyramid in the original network model,and improves the intermittent segmentation of the main veins of the tobacco leaves.The experimental results show that compared with the original DeepLabV3+semantic segmentation algorithm,the training time is reduced from 635 min to 311 min,the average interaction ratio(mIOU)reaches 80.66%,the average pixel accuracy(mPA)reaches 91.96%,the number of parameters in the network model is compressed by 85.32%,and the storage space is reduced to 30.63 MB.The network model parameters are compressed by 85.32%,and the storage space is reduced to 30.63 MB.
关 键 词:烟叶主脉 轻量化 注意力机制 密接采样 DeepLabV3+
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.222.110