检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡玉玲 邹伟光[1] 王鑫依 HU Yu-ling;ZOU Wei-guang;WANG Xin-yi(Institute of Electrical and Information Engineering,Beijing University of Civil Engineering and Architecture,Beijing 100044,China;Beijing Key Laboratory of Intelligent Processing for Building Big Data,Beijing University of Civil Engineering and Architecture,Beijing 100044,China)
机构地区:[1]北京建筑大学电气与信息工程学院,北京100044 [2]北京建筑大学建筑大数据智能处理方法研究北京市重点实验室,北京100044
出 处:《科学技术与工程》2024年第33期14298-14305,共8页Science Technology and Engineering
基 金:国家重点研发项目(2018YFC0807806);北京建筑大学基本科研业务基金(X20109)。
摘 要:在城市安全背景下,人车密集的智慧园区安全问题日益引起关注。实时检测进入园区内的人员、车辆,可以为应急情景下制定园区内人车的合理疏散策略提供重要的数据参考。为解决当前目标检测在应急事件发生时的环境复杂、目标密集、遮挡等导致的精度问题,以及模型计算量导致的快速性问题,提出了一种基于改进轻量级YOLOv5的人车混杂目标检测算法。在原始YOLOv5模型的基础上,将骨干网中的结构空间金字塔池化(spatial pyramid pooling-fast,SPPF)改进为SimSPPF,保持并改善模型实时性。在中尺度层增加一条额外的边,引入通道注意力模块(coordinate attention,CA),使得模型在检测人车混杂的场景中的准确度得到提高。实验结果表明,相较于YOLOv5s,该算法在保持检测速度在142帧/s的同时,精度上提高了2.1%,满足了智慧园区对于人、车混杂动态检测的准确性与实时性需求。In the context of urban security,the security problem of intelligent parks with dense human and vehicle has attracted increasing attention.Real-time detection of people and vehicles entering the park can provide important data reference for formulating reasonable evacuation strategies for people and vehicles in the park under emergency scenarios.To solve the accuracy problems caused by the complex environment,dense objects and occlusion of the current object detection during the occurrence of emergency events,as well as the rapidity problems caused by the number of model calculations,a hybrid object detection algorithm based on the improved lightweight YOLOv5 was proposed.Based on the original YOLOv5 model,the spatial pyramid pool structure spatial pyramid pooling-fast(SPPF)in the backbone network was improved to SimSPPF to improve the real-time performance of the model.By adding an extra edge to the mesoscale layer and introducing the channel attention mechanism coordinate attention(CA),the accuracy of the model in detecting the hybrid scene was improved.The experimental results show that compared with YOLOv5s,the algorithm not only maintains the detection speed at 142 frame/s but also improves the accuracy by 2.1%which meets the accuracy and real-time requirements of the hybrid dynamic detection of people and vehicles in the smart park.
关 键 词:智慧园区 应急疏散 人车混杂 动态目标检测 改进YOLOv5
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15