检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谢宗原 马鸿雁 李晟延 贺伟 许杰传 温昊宇 XIE Zong-yuan;MA Hong-yan;LI Sheng-yan;HE Wei;XU Jie-chuan;WEN Hao-yu(School of Electrical and Information Engineering,Beijing University of Civil Engineering and Architecture,Beijing 100044,China;Beijing Key Laboratory of Intelligent Processing for Building Big Data,Beijing 100044,China;National Virtual Simulation Experimental Teaching Center of Smart City,Beijing 100044,China)
机构地区:[1]北京建筑大学电气与信息工程学院,北京100044 [2]建筑大数据智能处理方法研究北京市重点实验室,北京100044 [3]智慧城市国家级虚拟仿真实验教学中心,北京100044
出 处:《科学技术与工程》2024年第33期14330-14338,共9页Science Technology and Engineering
基 金:北京建筑大学博士基金(ZF15054);北京建筑大学2023年度研究生创新项目(PG2023093);北京建筑大学2022年“双塔计划”(GJZJ20220802)。
摘 要:为解决传统跌倒检测算法受光线影响,不能对独居老人实施昼夜持续检测,且误检率、漏检率高等问题,提出一种结合轻量化YOLOv5和双摄像头的跌倒检测系统。首先,通过改进YOLOv5对室内老人进行检测,定位老人在室内的位置;其次,使用单目摄像头和红外热摄像头昼夜交替地对室内老人进行跌倒检测。通过目标定位与跌倒检测系统,在大幅度提高老人跌倒检测准确率的同时,提高了模型轻量化程度,降低了跌倒误检率、漏检率。结果表明,改进后的老人跌倒检测模型漏检率低至1.6%、误检率仅1.2%,具有较好的准确性和实时性。可见该系统可以有效实现昼夜检测,解决传统算法的局限性。To solve the problem that the traditional fall detection algorithm is affected by light and cannot continuously detect the elderly living alone day and night,and has high false detection and missed detection rates,a fall detection system combining lightweight YOLOv5 and dual cameras was proposed.Firstly,the elderly indoors were detected by improving YOLOv5,and the position of the elderly indoors was located.Secondly,a monocular camera and an infrared thermal camera were used to detect falls of the elderly indoors alternately day and night.Through the target positioning and fall detection system,while greatly improving the accuracy of fall detection for the elderly,it also improved the lightweight of the model and reduced the rate of false detection and missed detection of falls.The results show that the improved elderly fall detection model has a missed detection rate as low as 1.6%and a false detection rate of only 1.2%,with good accuracy and real-time performance.It can be seen that this system can effectively realize day and night detection and solve the limitations of traditional algorithms.
关 键 词:跌倒检测 YOLOv5 双摄像头 人体关键点检测 图像处理
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222