具有Dirichlet边界条件的单种群时滞反应扩散模型的稳定性和Hopf分支  

Stability and Hopf bifurcation of a single population delayed reaction-diffusion model with Dirichlet boundary condition

在线阅读下载全文

作  者:李永花 张存华[1] 潘英翠 LI Yonghua;ZHANG Cunhua;PAN Yingcui(School of Mathematics and Physics,Lanzhou Jiaotong University,Lanzhou 730070,China)

机构地区:[1]兰州交通大学数理学院,兰州730070

出  处:《华中师范大学学报(自然科学版)》2024年第6期641-647,共7页Journal of Central China Normal University:Natural Sciences

基  金:国家自然科学基金项目(61763024).

摘  要:该文主要研究了有界区域上具有Dirichlet边界条件的单种群时滞反应扩散模型的动力学行为.通过选取时滞为分支参数并分析模型在空间非齐次稳态解处线性化模型的特征值问题,获得了模型空间非齐次稳态解的稳定性以及Hopf分支的存在性.In this paper,the dynamics of a single population delayed reaction-diffusion model with Dirichlet boundary condition in a bounded domain is studied.The stability of spatially non-homogeneous steady-state solution at the spatial non-homogeneous steady and the existence of Hopf bifurcation of model are derived by selecting the time delay as the branching parameter and analyzing the eigenvalue problem of the model linearize-state solution.

关 键 词:时滞反应-扩散模型 稳定性 HOPF分支 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象