基于HPO-ELM的电主轴热误差建模  被引量:1

Thermal Error Modeling of Motorized Spindle Based on HPO-ELM

在线阅读下载全文

作  者:张珂 徐鹏 王展 王子男 ZHANG Ke;XU Peng;WANG Zhan;WANG Zinan(School of Mechanical Engineering,Shenyang Jianzhu University,Shenyang Liaoning 110168,China;School of Mechanical Engineering,Shenyang University of Technology,Shenyang Liaoning 110870,China)

机构地区:[1]沈阳建筑大学机械工程学院,辽宁沈阳110168 [2]沈阳工业大学机械工程学院,辽宁沈阳110870

出  处:《机床与液压》2024年第22期46-51,共6页Machine Tool & Hydraulics

基  金:国家自然科学基金项目(52175107,52205117);辽宁省兴辽英才青年拔尖人才项目(XLYC2203015)。

摘  要:电主轴转子热误差是导致机床加工误差最主要的因素。为了准确预测电主轴热误差,开展了基于HPO-ELM的电主轴热误差建模研究,采集电主轴温升和热误差数据,利用Kmeans++聚类结合灰色关联度理论对其进行分析,提出基于猎人猎物算法优化极限学习机的热误差建模方法,最后建立电主轴热误差预测模型。对电主轴热误差进行仿真分析,并将所提方法与ELM、GA-ELM方法进行热误差预测准确性对比。结果表明:相比ELM、GA-ELM方法,基于HPO-ELM建立的热误差模型具有更高的准确性,预测精度可达98.08%,预测残差值小于1μm,证明了此模型具有更好的预测精度和鲁棒性。Thermal error of motorized spindle rotor is the main factor leading to machining error of machine tool.In order to accurately predict the thermal error of motorized spindle,the thermal error modeling research based on HPO-ELM was carried out.The temperature rise and thermal error data of motorized spindle were collected,and they were analyzed using Kmeans++clustering and grey relational degree theory.The thermal error modeling method of extreme learning machine based on hunter-prey algorithm was proposed.Finally,the thermal error prediction model of motorized spindle was established.The thermal error of motorized spindle was simulated and analyzed,and the accuracy of thermal error prediction was compared with that of ELM and GA-ELM methods.The results show that compared with ELM and GA-ELM methods,the thermal error model based on HPO-ELM has higher accuracy,the prediction accuracy can reach 98.08%,and the prediction residual value is less than 1μm,which proves that the model has better prediction accuracy and robustness.

关 键 词:电主轴 热误差建模 猎人猎物算法 Kmeans++聚类 灰色关联度分析 

分 类 号:TH161[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象