Some Tighter Monogamy Inequalities in N-Qubit Systems  

N-比特系统更紧的单配性不等式

在线阅读下载全文

作  者:ZHANG Lu-lu YANG Yan-min CHEN Wei 张露露;杨彦敏;陈伟

机构地区:[1]Faculty of Science,Kunming University of Science and Technology,Kunming 650500,China [2]Research Center for Mathematics and Interdisciplinary Science and Technology,Kunming 650500,China [3]School of Computer Science and Technology,Dongguan University of Technology,Dongguan 523808,China

出  处:《Chinese Quarterly Journal of Mathematics》2024年第4期407-419,共13页数学季刊(英文版)

基  金:Supported by Yunnan Provincial Research Foundation for Basic Research(Grant No.202001AU070041);Natural Science Foundation of Kunming University of Science and Technology(Grant No.KKZ3202007036);Basic and Applied Basic Research Funding Program of Guangdong Province(Grant Nos.2019A1515111097 and 2023A1515012074).

摘  要:We construct a piecewise function to investigate some monogamy inequalities in terms of theαth power of concurrence and negativity(α≥2),entanglement of formation(α≥√2),and Tsallis-q entanglement(α≥1).These inequalities are tighter than the existing results with detailed examples.Particularly,it is worth highlighting some classes of quantum states which can saturate these monogamy inequalities forα=2,4 and 6 in terms of concurrence and negativity and forα=1,2 and 3 in terms of Tsallis-q entanglement.

关 键 词:Monogamy inequalities Entanglement measures N-qubit systems 

分 类 号:O29[理学—应用数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象