检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:叶忠伟[1] 吴雪莲[1] 黄学才[2] Ye Zhongwei;Wu Xuelian;Huang Xuecai(Department of Oncology,Lishui Central Hospital,Lishui,Zhejiang 323000,China;Department of Neurosurgery,Lishui Central Hospital,Lishui,Zhejiang 323000,China)
机构地区:[1]丽水市中心医院肿瘤科,浙江丽水323000 [2]丽水市中心医院神经外科,浙江丽水323000
出 处:《中国微侵袭神经外科杂志》2024年第11期647-652,共6页Chinese Journal of Minimally Invasive Neurosurgery
摘 要:目的探讨基于组织学特征及Ki-67指数的脑膜瘤患者术后复发风险模型构建。方法回顾性分析178例脑膜瘤患者的临床资料及病理组织学资料,包括患者年龄、性别、脑膜瘤WHO分级以及肿瘤的具体病理表现。同时根据术后复发情况分为复发组(n=52)和未复发组(n=126),对各项组织学特征与术后复发风险之间的关系进行多因素Logistic回归分析,构建基于组织学特征的脑膜瘤患者术后复发风险预测模型,并采用受试者工作特征(receiver operating characteristic,ROC)曲线及决策曲线分析模型的预测效能。结果与未复发组比较,复发组局限性坏死、脑组织浸润、Ki-67指数、有丝分裂指数、肿瘤分级的差异具有统计学意义(均P<0.05)。多因素Logistic回归分析显示:局限性坏死、脑组织浸润、Ki-67指数、有丝分裂指数、肿瘤分级为脑膜瘤患者术后复发的危险因素(均P<0.05)。ROC曲线进行拟合度检验,本模型以术后是否复发为状态变量,以模型预测概率值为检验变量,构建预测模型的曲线下面积(area under curve,AUC)为0.837(95%CI:0.775~0.888),特异度为80.16%,敏感度为76.92%。决策曲线结果显示:基于组织学特征的脑膜瘤患者术后复发风险模型有较好净获益率。结论基于组织学特征及Ki-67构建的模型,在预测脑膜瘤患者术后复发风险中具有较高应用价值。Objective To explore the construction of a postoperative recurrence risk model for meningioma patients based on histological features and Ki-67.Methods The clinical and pathohistological data of 178 meningioma patients were analyzed retrospectively,including age,gender,WHO grade of meningioma,and specific pathological manifestations of the tumor.The patients were divided into a recurrence group(n=52)and a non-recurrence group(n=126)based on postoperative recurrence.Multivariate logistic regression analysis was performed to investigate the relationship between various histological features and postoperative recurrence risk.A prediction model for postoperative recurrence risk in meningioma patients based on histological features was constructed,and the predictive performance of the model was evaluated using the receiver operating characteristic(ROC)curve and decision curve analysis.Results Compared with the non-recurrence group,the recurrence group showed statistically significant differences in localized necrosis,brain tissue infiltration,Ki-67,mitotic index,and tumor grade(all P<0.05).Multivariate logistic regression analysis revealed that localized necrosis,brain tissue infiltration,Ki-67,mitotic index,and tumor grade were risk factors for postoperative recurrence in meningioma patients(all P<0.05).The ROC curve was used for goodness-of-fit testing,with postoperative recurrence as the status variable and the model's prediction probability value as the test variable.The area under the curve(AUC)of the prediction model was 0.837(95%CI:0.775-0.888),with a specificity of 80.16%and a sensitivity of 76.92%.The decision curve results indicated that the model for predicting postoperative recurrence risk in meningioma patients based on histological features had a good net benefit rate.Conclusions The model constructed based on histological features and Ki-67 in meningioma patients has high application value in predicting postoperative recurrence risk.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49