基于改进YOLOv8的前视影像的路面病害检测方法  被引量:3

A method for detection of pavement defects in front-view images based on improved YOLOv8

在线阅读下载全文

作  者:赫英策 李禹萱 孙尚宇[1,2] 宋伟东[1,2] HE Yingce;LI Yuxuan;SUN Shangyu;SONG Weidong(School of Geomatics,Liaoning Technical University,Fuxin 123000,China;Collaborative Innovation Institute of Geospatial Information Service,Liaoning Technical University,Fuxin 123000,China)

机构地区:[1]辽宁工程技术大学测绘与地理科学学院,阜新123000 [2]辽宁工程技术大学地理空间信息服务协同创新研究院,阜新123000

出  处:《时空信息学报》2024年第5期605-617,共13页JOURNAL OF SPATIO-TEMPORAL INFORMATION

基  金:国家自然科学基金项目(42071343)。

摘  要:基于深度学习的图像目标检测方法具有检测精度高、检测速度快等优点,广泛应用于路面病害检测中,目前研究多关注俯视影像的路面病害检测,前视影像中复杂场景对检测精度影响的研究尚不足。本文基于YOLOv8(you only look once version 8)提出一种路面病害检测模型YOLO-RMID(road maintenance inspection detection)。利用Mask掩模将天空与地面分隔开,屏蔽空中悬挂输电线区域;将注意力机制融入主干特征提取部分中的快速空间金字塔池化(spatial pyramid pooling fast,SPPF)模块,提高裂缝所在区域权重;在特征融合部分中通过将BiFusion模块与RepBlock模块相结合,构建多尺度融合特征BFRB(BiFusion RepBlock)结构,提高模型对路面病害的感知能力;为验证方法可行性,制作路面病害数据集LNTU_RMID,结合公开数据集RDD2022,与常用的MUENet、CrackYOLO及DGE-YOLO-P模型进行对比评价。结果表明,本方法的综合性能相对最优,平均精度分别提高了约6.7%、5.4%、6.6%。In highway maintenance and inspection,the precise defects is a critical task that the precise detection of pavement defects is a critical task that directly impacts road safety and longevity.However,the complexity of scenes captured in road front-view images during maintenance inspections often results in low accuracy for pavement disease detection.This issue not only impedes the effectiveness of maintenance work but also poses potential risks to road users.To address this crucial challenge,this paper presents a pavement disease detection model called YOLO road maintenance detection(YOLO-RMID),which builds upon the YOLOv8 model to overcome the limitations of existing methods.One significant obstacle faced by the model was distinguishing between hanging wires and cracks in the images.This confusion can lead to inaccurate detection and misclassification.To resolve this,a well-designed mask module was employed to separate the sky from the ground,effectively isolating these two elements and reducing the likelihood of mistaking power lines for cracks.This method significantly enhances crack detection accuracy and aids in distinguishing different image objects.The model might incorrectly identify damage to pavement markings and crack repair errors as actual cracks,leading to false positives and inaccurate assessments of pavement conditions.To address this,the ASPPF module is ingeniously designed(noting that spatial pyramid pools operate swiftly).By focusing on specific features and patterns,the module enables the model to better differentiate true cracks from other anomalies,thereby reducing false detections and providing more reliable results.For partially or fully shaded pavement diseases,the model often struggles to identify them accurately.Shadows can obscure vital features,making it difficult for models to detect and classify diseases.To mitigate this,a BiFusion RepBlock(BFRB)structure is proposed to lessen the impact of shadows by enhancing the model’s capability to handle occluded areas.This structure facilita

关 键 词:路面病害检测 深度学习 SPPF YOLOv8 多尺度 MAP 

分 类 号:U418.6[交通运输工程—道路与铁道工程] TP183[自动化与计算机技术—控制理论与控制工程] TP391.41[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象