低轨卫星增强GNSS/MIMU紧组合定位性能分析  

Performance analysis of LEO satellites enhanced GNSS/MIMU tight integration positioning

在线阅读下载全文

作  者:丁虎山 陈帅[1] 宋华 丁鹏飞 DING Hushan;CHEN Shuai;SONG Hua;DING Pengfei(School of Automation,Nanjing University of Science and Technology,Nanjing 210094,China)

机构地区:[1]南京理工大学自动化学院,南京210094

出  处:《导航定位学报》2024年第6期70-75,共6页Journal of Navigation and Positioning

摘  要:针对智能手机内置低成本全球导航卫星系统(GNSS)存在的卫星信号衰减严重、伪距噪声大、抗干扰能力弱等问题,提出一种低轨(LEO)卫星增强GNSS/微惯性测量单元(MIMU)紧组合定位方法:基于智能手机采集的GNSS观测数据和MIMU的量测数据及开普勒轨道根数计算得到的LEO卫星观测数据构建紧组合算法模型;并对其定位性能进行分析。实验结果表明,增加LEO卫星观测量后,GNSS的位置精度因子(PDOP)可降低16.63%,组合导航系统水平和高程方向的定位精度提升至1.361 m和1.418 m;通过LEO卫星增强能够显著提升智能手机GNSS/MIMU紧组合定位性能。Aiming at the problems of severe satellite signal attenuation,high pseudorange noise and weak anti-interference capabilities in the low-cost global navigation satellite system(GNSS)built into smartphones,the paper proposed a tightly coupled navigation method using low Earth orbit(LEO)satellite constellations enhanced GNSS/miniature inertial measurement unit(MIMU):a tightly coupled navigation model was constructed by integrating GNSS satellite observation data and MIMU measurement data from the built-in devices of smartphones,and LEO satellite observation data calculated from Keplerian orbital elements;then,the performance of positioning was analyzed.Experimental result showed that the addition of LEO satellite observations would help reduce the position dilution of precision(PDOP)of GNSS by 16.63%,and the positioning accuracy in the horizontal and vertical directions of the integrated navigation system would be improved to 1.361 m and 1.418 m,respectively,indicating that the inclusion of LEO satellite could effectively enhance the positioning accuracy of GNSS/MIMU integrated navigation systems in smartphones.

关 键 词:低轨(LEO)卫星 组合导航 智能手机 微惯性测量单元(MIMU) 全球卫星导航系统(GNSS) 

分 类 号:P228[天文地球—大地测量学与测量工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象