基于PSO-CS算法的主动配电网规划系统研究  

Research on Active Distribution Network Planning System Based on PSO-CS Algorithm

在线阅读下载全文

作  者:刘丽 梁大鹏 薛璐璐 杨亮 LIU li;LIANG Dapeng;XUE Lulu;YANG Liang(State Grid Jibei Electric Power Economic Research Institute,Beijing 100038,China;Beijing Bowang China Science and Technology Co.,Ltd.,Beijing 100045,China)

机构地区:[1]国网冀北电力有限公司经济技术研究院,北京100038 [2]北京博望华科科技有限公司,北京100045

出  处:《自动化与仪器仪表》2024年第11期110-114,共5页Automation & Instrumentation

基  金:国网冀北电力公司科技项目,基于云边协同的配电物联网关键技术及典型方案研究(52018F190017)。

摘  要:近年来,主动配电网规划作为一种新兴的电力系统规划方法,已经得到了广泛的关注和研究。为减少配电网的损耗,提高系统的稳定性,同时降低投资成本,研究在布谷鸟算法的基础上对其步长因子进行优化,并将改进的布谷鸟算法与粒子群算法结合为一种混合算法,最后将其应用于配电网规划问题的求解中,结果显示,混合算法的平均计算时间为12.5 s,显著低于其他3种算法,证明了其计算效率较高。基于混合算法的配电网系统的电压幅值差比其他3种算法低28.6%、50.0%、266.7%,证明了该系统稳定性较高。以上结果说明设计的基于混合算法的配电网系统有助于提高电力系统的效率和稳定性,能够为电力系统的发展提供技术支持和指导。In recent years,active distribution network planning,as an emerging power system planning method,has received widespread attention and research.In order to reduce losses in the distribution network,improve system stability,and reduce investment costs,a study was conducted to optimize the step factor based on the cuckoo algorithm.The improved cuckoo algorithm was combined with particle swarm optimization to form a hybrid algorithm.Finally,it was applied to solve distribution network planning problems.The results showed that the average calculation time of the hybrid algorithm was 12.5 seconds,significantly lower than the other three algorithms,Proved its high computational efficiency.The voltage amplitude difference of the distribution network system based on hybrid algorithm is 28.6%,50.0%,and 266.7% lower than the other three algorithms,proving that the system has high stability.The above results indicate that the designed distribution network system based on hybrid algorithms helps to improve the efficiency and stability of the power system,and can provide technical support and guidance for the development of the power system.

关 键 词:电力 系统 主动配电网 布谷鸟 粒子群 算法 规划 

分 类 号:TM935[电气工程—电力电子与电力传动] TP29[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象