A Hybrid Approach for the Sales Forecasting of Paracetamol Products  

在线阅读下载全文

作  者:Dalel Ayed Lakhal Saoussen Bel Hadj Kacem Moncef Tagina Mohamed Ali Amara 

机构地区:[1]LARIA Research Laboratory,National School of Computer Sciences,University of Manouba,Tunis,Tunisia [2]Faculty of Economics and Management,University of Carthage,Carthage,Tunisia [3]MBS Technologies,Grenoble,France

出  处:《Journal of Artificial Intelligence and Technology》2024年第4期296-304,共9页人工智能技术学报(英文)

摘  要:The pharmaceutical industry is facing challenges due to various factors such as supply chain disruptions,changing consumer behavior,and regulatory changes.Accurate demand forecasting is essential to ensure an adequate supply of drugs.The goal of this work is to forecast paracetamol product demand.For this purpose,we propose a hybrid forecasting model combining two effective forecasting techniques:SARIMA(Seasonal AutoRegressive Integrated Moving Average)and ANFIS(Adaptive Neuro-Fuzzy Inference System).This proposal consists of nonlinear components of time series by ANFIS and adjusting the result by the mean of the residuals of the SARIMA to improve the accuracy and performance of ANFIS predictions.Before the prediction phase,we preprocess our data and detect the anomalies in our dataset with Locally Selective Combination in Parallel Outlier Ensembles(LSCP).Then,by treating these anomalies as missing values,they are imputed using the combination of fuzzy-possibilistic c-means(FCM)with support vector regression(SVR)and a genetic algorithm(GA).Finally,we evaluate the performance of the model and some known models based on MAPE.We choose the hybrid model SARIMA-ANFIS that provides the most accurate and reliable forecasting.

关 键 词:ANFIS anomaly detection PARACETAMOL sales forecasting SARIMA SARIMA-ANFIS 

分 类 号:F274[经济管理—企业管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象