检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:习家轩 张大志 肖云龙 王志会 周华兵[1,2] XI Jiaxuan;ZHANG Dazhi;XIAO Yunlong;WANG Zhihui;ZHOU Huabing(College of Computer Science and Engineering,Wuhan Institute of Technology,Wuhan of Hubei Prov.430205,China;Hubei Provincial Key Laboratory of Intelligent Robot,Wuhan Institute of Technology,Wuhan of Hubei Prov.430205,China;CNNC Key Laboratory on Nuclear Industry Simulation,China Nuclear Power Operation Technology Co.,Ltd.,Wuhan of Hubei Prov.430040,China;China Nuclear Power Operation Technology Co.,Ltd.,Wuhan of Hubei Prov.430040,China)
机构地区:[1]武汉工程大学计算机科学与工程学院,湖北武汉430205 [2]武汉工程大学智能机器人湖北省重点实验室,湖北武汉430205 [3]中核武汉核电运行技术股份有限公司中核核工业仿真技术重点实验室,湖北武汉430040 [4]中核武汉核电运行技术股份有限公司,湖北武汉430040
出 处:《核科学与工程》2024年第5期1106-1115,共10页Nuclear Science and Engineering
基 金:国家自然科学基金资助项目(No.62171327);湖北省核电运行工程技术研究中心第一批应用基础技术研究科研基金资助项目(No.B210610);国防科工局核能开发专项资助项目(No.ZX200302)。
摘 要:针对核电厂高压加热测点数据实时预测在工程实际中存在故障数据缺失,观测数据量少等问题,提出基于数字孪生仿真数据的样本迁移学习方法。首先,利用数字孪生技术产生的特征丰富、样本充足的核工业相关仿真数据构建源域数据集,利用核工业设备运行过程中各监测点获取的实际观测数据构建目标域数据集;然后,通过交叉验证得到的分类模型,测得源域数据与目标域数据的相似度,将源域数据中与目标域数据相似的数据赋予高权重,使源域数据与目标域数据更匹配;最后,利用带权重的源域数据训练核工业数据实时预测模型。实验结果表明,样本迁移学习方法在小样本与特征缺失的情况下,具有良好的迁移学习效果,并且相较于传统迁移学习方法具有较高的实时预测精度。To address the problems of missing fault data and insufficient observation data in real-time prediction of the high-voltage heating measurement point data of nuclear power plant in engineering practice,an instance-based transfer learning method based on the digital twin simulation data is proposed.Firstly,using digital twin to generate rich features and sufficient samples of nuclear industry-related simulation data to construct the source domain dataset,and using the actual observed data obtained from various monitoring points during the operation of nuclear equipment to construct the target domain dataset.Then,the classification model obtained through cross-validation is used to measure the similarity between the source domain data and the target domain data.Data in the source domain that is similar to the target domain data is given a high weight,making the source domain data more compatible with the target domain data.Finally,a real-time prediction model for nuclear industry data is trained using weighted source domain data.The experimental results show that the instance-based transfer learning method has better performance under small sample and feature missing conditions,and has higher accuracy compared to traditional transfer learning methods.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.223.168.194