基于改进YOLOv5的人体跌倒检测算法  

Human fall detection algorithm based on improved YOLOv5

在线阅读下载全文

作  者:冯梓文 冯云霞[1] FENG Ziwen;FENG Yunxia(School of Information Science and Technology,Qingdao University of Science and Technology,Qingdao 266061,China)

机构地区:[1]青岛科技大学信息科学技术学院,山东青岛266061

出  处:《电子设计工程》2025年第1期1-6,共6页Electronic Design Engineering

基  金:国家自然科学基金资助项目(61702135,61806107);山东省自然科学基金面上项目(ZR2023MF088)。

摘  要:受到跌倒时动作变化快、姿态多和复杂环境的影响,跌倒检测算法会出现误检、漏检和检测速度慢的问题。为解决上述问题,提出一种基于改进的YOLOv5算法,进行居家环境下的实时跌倒检测。使用RepVGG对YOLOv5的Backbone进行优化,增强骨干网络特征提取能力;在网络中添加卷积注意力机制,强化模型对重要特征的关注;在特征融合部分引入加权双向特征金字塔网络并简化,充分融合不同尺度特征。实验结果表明,与未改进前相比,该方法在精度、召回率和平均精度上分别提高3.43%、1.41%和3.1%,优化了检测效果,更好地满足实际使用要求。Due to the rapid change of human movement,many posture and complex environment,the fall detection algorithm will have the problems of false detection,missing detection and slow detection speed.To solve the above problems,an improved YOLOv5 algorithm is proposed for real⁃time fall detection in home environment.RepVGG is used to optimize the Backbone of YOLOv5 to enhance the feature extraction capability of the backbone network.The convolutional attention mechanism is added to the network to strengthen the model’s attention to important features.The weighted bidirectional feature pyramid network is introduced into the feature fusion part and simplified to integrate features of different scales more fully.The experimental results show that the accuracy,recall rate and average accuracy of the method are improved by 3.43%,1.41%and 3.1%respectively,which optimizes the detection effect and better meets the practical requirements.

关 键 词:跌倒检测 YOLO RepVGG 注意力机制 Bifpn 

分 类 号:TN391[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象