检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘新平 孙越泓[1,2] 刘佛祥 Liu Xinping;Sun Yuehong;Liu Foxiang(School of Mathematical Sciences,Nanjing Normal University,Nanjing 210023,China;Ministry of Education Key Laboratory of NSLSCS,Nanjing 210023,China;School of Information Engineering,Nanchang University,Nanchang 330029,China)
机构地区:[1]南京师范大学数学科学学院,江苏南京210023 [2]大规模复杂系统数值模拟教育部重点实验室,江苏南京210023 [3]南昌大学信息工程学院,江西南昌330029
出 处:《南京师大学报(自然科学版)》2024年第4期59-67,共9页Journal of Nanjing Normal University(Natural Science Edition)
基 金:大规模复杂系统数值模拟教育部重点实验室开放课题基金资助项目(202409);国家自然科学基金项目(12471290);江西省自然科学基金项目(20224BAB212003)。
摘 要:在超目标优化问题中,目标之间的冲突会导致没有一个解可以同时优化所有目标,求解时存在大量非支配解.选择合适的解排序算法评估解的质量,对算法性能起着关键作用.而不同的解排序算法,在处理不同的超目标问题时有着各自的优劣.因此,本文提出一个基于投票机制和动态分配价值点的集成框架(ensemble many-objective evolutionary algorithm based on voting and dynamic value point,VDVP-EMEA),将不同解排序算法聚合在一起协同工作.首先,根据每种解排序算法的有效投票率,动态分配每个专家拥有的价值点,有效投票越多的解排序算法,相应赋予更多的价值点,反之则对价值点进行惩罚.然后使用末位淘汰制,废弃能力最差的专家的投票.其次,在环境选择过程中,使用精英选择策略,通过投票结果和价值点来定义个体适应度,适应度越大的个体越优先被选择.最后,为了测试VDVP-EMEA算法的性能,进行大量试验,将VDVP-EMEA与4种常用的单一解排序算法NSGA-III、SPEA2、BiGE、GrEA和一种先进的集成算法VMEF进行了比较.实验结果表明,VDVP-EMEA的收敛性和多样性明显优于这些算法.In many-objective optimization problems,the conflicts among the objectives lead to the situation where solutions cannot optimize all objectives simultaneously,and a large number of non-dominated solutions exist in the process.An appropriate solution-sorting method plays a crucial role in evaluating the quality of solutions and the performance of the algorithm.Generally,different solution-sorting methods have their own pros and cons when handling different many-objective problems.Therefore,an ensemble many-objective evolutionary algorithm based on voting and dynamic value point(VDVP-EMEA)is proposed,which can integrate different solution-sorting methods and cooperate together.First,the value points of each expert are dynamically allocated by the voting success rate of each solution-sorting method,and the solution-sorting method with more voting success rate will be correspondingly assigned more value points.Otherwise,the value points will be punished.The last elimination system is used to cancel the votes of the most inefficient experts.The elite selection strategy is used to define fitness of individuals by voting results and value points,and the individuals with greater fitness value are preferentially selected in the process of environment selection.Finally,a large number of experiments are conducted to test the performance of VDVP-EMEA,and VDVP-EMEA is compared with five advanced many-objective evolutionary algorithms NSGA-III,SPEA2,BiGE,GrEA,and VMEF.Experimental results indicate that the overall performance of VDVP-EMEA is distinctly better than these algorithms.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.206.232