检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吕思蓓 郭骁 LV Sibei;GUO Xiao(School of Mathematics,Northwest University,Xi′an 710127,China)
出 处:《纯粹数学与应用数学》2024年第4期595-605,共11页Pure and Applied Mathematics
基 金:国家自然科学基金(12301384).
摘 要:随着数据所有者对于数据隐私的重视程度不断增加,如何高效完成用户的数据删除请求成为相关机构关注的热点,并据此衍生出一系列关于机器遗忘算法的研究.本文提出了基于L1正则化的CR模型,利用ADMM算法得到了影响函数的显式解,并通过一次牛顿更新法来实现精准高效的机器遗忘.真实数据实验表明,所提方法在分类能力和运行时间上优于再训练模型和L2-CR模型.相对于再训练模型,时间缩短了超过100倍;相对于L2正则化模型,准确率提高了5-7个百分点,达到了遗忘效率和模型效用的权衡.With the increasing emphasis on data privacy by data owners,efficiently handling user data deletion requests has become a focal point for relevant organizations.This has led to a series of studies on machine forgetting algorithms.This paper proposes a Certified Removal(CR)model based on L1 regularization.The explicit solution of the influence function is obtained using the ADMM algorithm,and precise and efficient machine forgetting is achieved through a one-time Newton update.Real data experiments demonstrate that the proposed method outperforms both retraining models and L2-CR models in terms of classification accuracy and runtime.Compared to retraining models,the time is reduced by over 100 times.In comparison to L2 regularization models,the accuracy is improved by 5-7 percentage points,striking a balance between forgetting efficiency and model utility.
关 键 词:机器遗忘 L1正则化 一次牛顿更新 ADMM算法
分 类 号:O212[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.85.94