检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈韦宏 CHEN Weihong(Shanxi College of Applied Science and Technology,Taiyuan 030062,China)
出 处:《畜禽业》2024年第12期43-46,共4页Livestock and Poultry Industry
摘 要:近年来,动物疫病频发,气候变化等因素加剧了动物健康管理的复杂性,迫使行业采用更高效的技术手段来应对这些挑战。探讨了动态监控与预测模型在动物健康管理中的应用现状,介绍了当前动物健康管理中应用的生理指标监控、行为监测及环境因素监测结合数据采集与处理技术的创新发展。随后分析了基于机器学习和时间序列分析的预测模型在动物疾病预测中的应用,并进一步探讨了动态调整与反馈机制。结论指出,动态监控与预测模型在提高动物健康管理效率、减少疫病风险方面具有显著优势,同时在系统维护、模型透明性、成本控制等方面存在局限性。In recent years,the frequent occurrence of animal diseases and climate change have exacerbated the complexity of animal health management,forcing the industry to adopt more efficient technological means to meet these challenges.The current status of dynamic monitoring and predictive modeling in animal health management is discussed,and the innovative development of physiological indicator monitoring,behavioral monitoring,and environmental factor monitoring combined with data acquisition and processing technologies currently applied in animal health management is introduced.Subsequently,the application of predictive models based on machine learning and time series analysis in animal disease prediction is analyzed,and the dynamic adjustment and feedback mechanism is further explored.It is concluded that dynamic monitoring and prediction models have significant advantages in improving the efficiency of animal health management and reducing the risk of epidemics,while there are limitations in data privacy,security issues and maintainance.
关 键 词:动物健康管理 动态监控系统 预测模型 机器学习 时间序列分析
分 类 号:S851.3[农业科学—预防兽医学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7