基于改进UNet模型的眼球超声图像分割算法研究  

Research on Segmentation Algorithm of Eye Ultrasound Image Based on Improved UNet Model

在线阅读下载全文

作  者:赵兵 Bing Zhao(School of Mechanical Engineering,University of Shanghai for Science and Technology,Shanghai)

机构地区:[1]上海理工大学机械工程学院,上海

出  处:《建模与仿真》2024年第6期5808-5816,共9页Modeling and Simulation

摘  要:在医学图像分割领域,提高分割性能一直是一个具有挑战性的任务。超声图像具有边缘模糊、噪声污染等缺点,为了解决眼球超声图像分割结果不理想这一难题,本文提出了一种基于UNet的改进分割算法。首先,本文采用了残差网络(ResNet)结合UNet,有效地解决了模型退化的问题,进一步提高了模型的精度和泛化能力;其次,在主干特征提取部分引入高效多尺度注意力(EMA)机制,以增强分割模型的特征表示能力;最后,通过RAVIR数据集进行泛化性实验,证明了所提出模型的泛化能力。实验结果显示,改进的UNet算法在超声眼球图像数据集上获得的MIoU和Dice的值分别达到了82.5%和82.3%,相比UNet模型分别提升了1.1%和1.4%,具有更好的医学图像分割效果。In the field of medical image segmentation,improving segmentation performance has been a challenging task.Ultrasound images have disadvantages such as blurred edges and noise pollution;in order to solve the complex problem of unsatisfactory segmentation results of eye ultrasound images,this paper proposes an improved segmentation algorithm based on UNet.Firstly,the residual network(ResNet)combined withUNetisusedin thispaperto effectively solvetheproblemof model degradation and further improve the accuracy and generalization ability of the model;secondly,the efficient multi-scale attention(EMA)mechanism is introduced in the central feature extraction part to enhance the feature representation ability of the segmentation model;finally,generalizability experiments are carried out with the RAVIR dataset,which proves the generalization ability of the proposed model’s generalization ability.The experimental results show that the improved UNet algorithm achieves 82.5%and 82.3%values of MIoU and Dice on the ultrasound eye image dataset,which are 1.1%and 1.4%higher than the UNet model,and it has better medical image segmentation results.

关 键 词:图像分割 残差网络 UNet 注意力机制 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象