检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵兵 Bing Zhao(School of Mechanical Engineering,University of Shanghai for Science and Technology,Shanghai)
机构地区:[1]上海理工大学机械工程学院,上海
出 处:《建模与仿真》2024年第6期5808-5816,共9页Modeling and Simulation
摘 要:在医学图像分割领域,提高分割性能一直是一个具有挑战性的任务。超声图像具有边缘模糊、噪声污染等缺点,为了解决眼球超声图像分割结果不理想这一难题,本文提出了一种基于UNet的改进分割算法。首先,本文采用了残差网络(ResNet)结合UNet,有效地解决了模型退化的问题,进一步提高了模型的精度和泛化能力;其次,在主干特征提取部分引入高效多尺度注意力(EMA)机制,以增强分割模型的特征表示能力;最后,通过RAVIR数据集进行泛化性实验,证明了所提出模型的泛化能力。实验结果显示,改进的UNet算法在超声眼球图像数据集上获得的MIoU和Dice的值分别达到了82.5%和82.3%,相比UNet模型分别提升了1.1%和1.4%,具有更好的医学图像分割效果。In the field of medical image segmentation,improving segmentation performance has been a challenging task.Ultrasound images have disadvantages such as blurred edges and noise pollution;in order to solve the complex problem of unsatisfactory segmentation results of eye ultrasound images,this paper proposes an improved segmentation algorithm based on UNet.Firstly,the residual network(ResNet)combined withUNetisusedin thispaperto effectively solvetheproblemof model degradation and further improve the accuracy and generalization ability of the model;secondly,the efficient multi-scale attention(EMA)mechanism is introduced in the central feature extraction part to enhance the feature representation ability of the segmentation model;finally,generalizability experiments are carried out with the RAVIR dataset,which proves the generalization ability of the proposed model’s generalization ability.The experimental results show that the improved UNet algorithm achieves 82.5%and 82.3%values of MIoU and Dice on the ultrasound eye image dataset,which are 1.1%and 1.4%higher than the UNet model,and it has better medical image segmentation results.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170